
RECENT IMPROVEMENTS ON MICROSOFT’S

TRAINABLE TEXT-TO-SPEECH SYSTEM - WHISTLER

X. Huang, A. Acero, H. Hon, Y. Ju, J. Liu, S. Meredith, M. Plumpe

Microsoft Research

One Microsoft Way

Redmond, Washington 98052, USA

ABSTRACT

Whistler Text-to-Speech engine was designed so that we can

automatically construct the model parameters from training data.

This paper will focus on recent improvements on prosody and

acoustic modeling, which are all derived through the use of

probabilistic learning methods. Whistler can produce synthetic

speech that sounds very natural and resembles the acoustic and

prosodic characteristics of the original speaker. The underlying

technologies used in Whistler can significantly facilitate the

process of creating generic TTS systems for a new language, a

new voice, or a new speech style. Whisper TTS engine supports

Microsoft Speech API and requires less than 3 MB of working

memory.

Text Analysis

Prosody

Generation

Unit

Concatenation

Input text

Speech Output

Prosody

Templates

Unit

Inventory

Prosody Model

Unit Generation

Text Analysis

HMM Training

Segmented

Corpus

Unlabeled

Corpus

Analysis Phase

Synthesis Phase

1. INTRODUCTION

Although Text-to-Speech (TTS) systems today have achieved a

high level of intelligibility, their unnatural prosody and synthesis

voice quality still prevent them from being widely deployed in

man-machine communication. In addition, the process of

building a new synthesis voice often is highly labor-intensive.

For prosody modeling, most traditional TTS systems use

linguistic rules to define the prosody parameters [9][12]. Only

limited natural language processing is generally used prior to

prosody parameter generation. These rule-based prosody models

tend to sound robotic. Moreover, while these rules may have

been derived from speech of a donor speaker, the resulting

synthetic prosody typically does not resemble the prosody of the

original speaker. To increase naturalness, stochastic learning

techniques such as decision trees [2][4][13][14] have been

recently proposed to learn the prosody from a hand-labeled

prosody corpus. Nonetheless, the creation of a prosody-labeled

corpus remains a labor-intensive process.

For speech generation, there are two main methods used: formant

synthesis [1] and concatenative synthesis [2][14][15]. Formant

synthesizers use a simple model of speech production and a set

of rules to generate speech. While these systems can achieve

high intelligibility, their naturalness is typically low, since it is

very difficult to accurately describe the process of speech

generation in a set of rules. In recent years, data-driven

approaches such as concatenative synthesis have achieved a

higher degree of naturalness. Nevertheless, these speech units are

still tediously extracted by human experts. As there are

thousands of possible co-articulation contextual variations, the

process of creating a good quality TTS system often takes years.

Formant synthesizers may sound smoother than concatenative

synthesizers because they do not suffer from the distortion

encountered at the concatenation point. To reduce this distortion,

concatenative synthesizers often select their units from carrier

sentences, or monotone speech, and/or perform spectral

smoothing, all of which can lead to a decrease of naturalness.

The resulting synthetic speech may not resemble the donor

speaker in the training database.

Another data-driven approach used to minimize the number of

concatenation points is to select large units, such as syllables or

words. While this approach allows for excellent voice quality, it

results in a large non-scaleable system, and it does not generalize

well to new acoustic contexts.

Figure 1. Block diagram of the Whistler TTS system.

The left part represents the run-time synthesis, while the

right part represents the analysis phase.

The objective of Microsoft’s Whistler (Whisper Highly

Intelligent Stochastic TaLkER) TTS system [6][10] is to make

the system completely trainable. We will discuss the underlying

technology used in Whistler and its most recent improvements.

Our goal is to leverage our work in the Whisper speech

recognition system [5] to make Whistler trainable, scaleable and

natural. Our current implementation used the text analysis

component derived from Lernout & Hauspie’s commercial TTS

engine [16]. A block diagram of Whistler can be seen in Fig. 1.

The left part of the diagram corresponds to the run-time part of

the system, whereas the right part corresponds to the analysis

module. The analysis phase is required to obtain the inventory of

acoustic units and to determine the parameters of the prosody

model.

Our data-driven approach takes advantage of the analysis of

large amounts of natural speech and avoids the over-generation

problem found in traditional hand-tuned systems. Our methods

not only improved naturalness but also decreased the time

required to create a new voice, and made the synthetic speech

similar to the original donor speaker. We were also able to build

a highly scaleable system, which can tradeoff voice quality and

memory size; generality and specificity.

This paper is organized as follows. In Section 2 we discuss

Whistler’s front-end, and our corpus-based prosody model. In

Section 3 we then describe Whistler’s back-end, and how we

extract acoustic units from the corpus. Finally we summarize our

major findings and outline our future work.

2. WHISTLER’S FRONT-END

2.1 Text Analysis Model

We have used a text analysis component derived from Lernout &

Hauspie’s commercial TTS system [16]. This component

performs efficient text analysis functions, including text

normalization, grapheme-to-phoneme conversion, part-of-speech

tagging, moderate grammatical analysis, and intonational

specifier generation. The Whistler prosody model assigns pitch

contours to input sentences based on the analysis this component

provides. Alternative text analysis modules may be easily

substituted in future versions.

2.2 Prosody Model

The prosodic patterns of speech can be modeled by predicting

several accentual classes of syllables. These classes are

characterized by their phonological, grammatical, and contextual

properties, as well as by tonal markings or tones that occur on

most syllables: a high tone (H), a low tone (L), combinations of

H and L, or unmarked (*) [12]. Further additional special

markings can be used for syllables in words ending a phrase or

sentence.

For clarity, we define:

Clause as a linguistic phrase of N syllables, forming a

natural pause-bounded unit;

Clause Specification Vector S as an N-dimensional

vector of the tones and other context features for each of

the clause’s syllables; and

Clause Pitch Vector P as an N-dimensional vector of

the F0 values for each syllable of the corresponding

vector S.

The runtime model is scaleable. In its most comprehensive form,

it consists of a very large set of S:P pairs derived from a

professional speaker’s reading of a variety of text genres in a

uniform style. These are supplemented by a phrase specification

table, which captures general characteristics of representative

very short phrases of a wide variety of types and contexts. The

phrase specification table is used to generate high-quality

defaults as described below. In its most minimal form, the

runtime system relies on the phrase specification table alone for

contour generation.

The prosody generation module has the following components:

Clause Specification. Given an input clause analysis of

an input i of N syllables, consisting of lexical stress

marks and the annotations produced by the text analysis

module, this component generates an N-dimensional

clause specification vector S(i).

Prosody Contour Generation. We then select the

specifier S from the donor’s database which is most

similar to the input vector S(i). We use its

corresponding prosody vector P to generate the pitch

contour anchor points. If no clause pattern in the

database S:P is sufficiently close by the matching

metric, every individual syllable in the input string will

be assigned a high quality default pitch, based on the

phrase context of each as indexed by the phrase

specification table. The phrase specification table will

also be used when the system is running in minimized

mode, without the S:P database present.

Stochastic Variation. When an exact specification

vector match is not present, or when running in

minimized mode with only the phrase specification

table, stochastic variation is applied to the anchor values

obtained from either the (partially mismatched) vector P

for S(i) or from the phrase specification table.

Contour Interpolation and Smoothing. Interpolation

across unspecified phonemes and smoothing over a

short window across the clause are then applied for a

more natural effect.

While prosody parameters generally refer to pitch, duration and

amplitude, we found that with our rich context-dependent units

(see Section 3.1), the use of the unit-based amplitude and

duration resulted in fairly natural speech.

To obtain the various clause specification vectors, we need to

assign tones and other contextual feature annotations to each

syllable in the training database. Because doing this by human

inspection is a labor intensive process, and because in the

synthesis process the prosody module has to derive the

specification vector S(i) directly from input text, we have

experimented with consistent use of the text analysis module for

annotation of the training data as well. In combination with a

carefully constructed recording script, and a well-trained

speaker, this has resulted in acceptable levels of consistency

between linguistic feature annotation and the speaker’s

recording, in representative samples. Where variance has been

found, it appears to be systematic, providing a consistent effect

of individual style. The pitch vector P for each clause is derived

by representative sampling of salient points from each syllable of

the speaker’s recorded utterances.

The assignment of the template closest to the input specification

vector is straightforward when there is an exact match of

annotation features. Otherwise, a dynamic programming

algorithm is used in conjunction with a cost function (distortion

measure) to align tonal vectors of different length or type. The

cost function values are derived under plausible assumptions

regarding intonational structure. For instance, the cost of

mismatching a right-edge boundary tone (say the extra-high H at

the end of certain yes-no questions) is much higher than having

to interpolate over a ‘missing’ unaccented syllable earlier in the

clause.

The sentences in the training script are selected to correspond to

statistically frequent tonal patterns in natural speech. We have

derived approximately 10,000 different clause specifiers from

our 6,000-sentence corpus. Coverage of these for test texts

ranges from 40% to 80%, depending on the cost threshold set in

the matching process, with the remainder being made up as high-

quality defaults from the phrase specification table, described

above.

Whistler’s data-driven model has resulted in a relatively natural

prosody. The prosodic speaking style can be readily identified

when used in conjunction with the units extracted from the same

speaker that are described in the following section.

3. WHISTLER’S BACK-END

3.1 Unit Generation

Concatenative synthesizers accomplish unit generation by cutting

speech segments from a database recorded by a target speaker

[11]. There are three phases in the process of building a unit

inventory:

Conversion between a phoneme string and a unit string.

Segmentation of each unit from spoken speech.

Selection of a good unit instance when many are

available in the corpus.

Traditionally, the conversion between a phoneme string and a

unit string has been handled by defining the unit as a diphone,

which contains the transition between two phones. In English

there are about 1500 to 2000 diphones, and given this choice of

unit the mapping is straightforward. While the choice of the

diphone as the basic unit retains the transitional information,

there can be large distortions due to the difference in spectra

between the stationary parts of two units obtained from different

contexts. As evidenced in today’s diphone-based systems,

naturalness of synthetic speech can be sometimes significantly

hampered by the context mismatch of diphone units. Once the set

of units has been decided, the database is traditionally manually

segmented into those diphone units, a labor-intensive process. In

addition, selection of the representative diphone units can only

be done on a trial and error basis, which doesn’t usually address

the potential distortion at any concatenation point.

To achieve a more natural voice quality, one must take more

contexts into account, going beyond diphones. However, simply

modeling triphones (a phone with a specific left and right

context) already requires more than 10,000 units for English.

Fortunately, effective clustering of similar contexts modeled in a

sub-phonetic level, to allow flexible memory-quality

compromise, has been well studied in the speech recognition

community [5]. Whistler uses decision tree based senones [3][7]

as the synthesis units. A senone is a context-dependent sub-

phonetic unit which is equivalent to a HMM state in a triphone

(which can be easily extended to more detailed context-

dependent phones, like quinphone). A senone could represent an

entire triphone if a 1-state HMM is used to model each phoneme.

The senone decision trees are generated automatically from the

analysis database to obtain minimum within-unit distortion (or

entropy). As widely used in speech recognition, the use of

decision trees will generalize to contexts not seen in the training

data based on phonetic categories of neighboring contexts, yet

will provide detailed models for contexts that are represented in

the database.

To segment the speech corpus we used the speech features

developed in Whisper [5] to align the input waveform with

phonetic symbols that are associated with HMMs states. HMMs

are trained from the speaker-dependent data of the target speaker.

Our training database for unit selection contains about 6,000

phonetically balanced sentences, recorded in natural style. Both

the decision tree and hidden Markov models are trained with the

speaker-dependent data. With our current training database, we

noticed that 4% of the training sentences contain some gross

segmentation errors (larger than 20 ms) when compared to hand

labeled data, which were mostly caused by incorrect

transcriptions. Nevertheless, good context coverage and

consistent segmentation by HMMs typically overcomes the

drawback of an imperfect automatic segmentation when

compared to manual segmentation.

To select good unit instances when many are available, we first

compute unit statistics for amplitude, pitch and duration, and

remove those instances far away from the unit mean. Of the

remaining unit instances, a small number can be selected through

the use of an objective function. In our current implementation,

the objective function is based on HMM scores. During runtime,

the synthesizer could either concatenate the best units pre-

selected in the off-line analysis or dynamically select the senone

instance sequence that minimizes a joint distortion function. The

joint distortion function is a combination of HMM score, unit

concatenation distortion and prosody mismatch distortion.

Experiments indicate that our multiple instance based synthesizer

significantly improve the naturalness and overall quality over

traditional single instance diphone synthesizer because of its rich

context modeling, including phonetic, spectral and prosodic

contexts. The Whistler system is highly scaleable because the

number of senones and instances per senone can be determined

based on a balance of quality versus memory resources.

One interesting note is that we conducted some experiments

comparing data recorded with natural and monotone pitch. On

the contrary to the common belief that monotone recording is

critical to derive acoustic units, we have not observed any

significant improvement using monotone recording. This is

probably because of our detailed context models.

3.2 Speech Synthesis

For synthesis we employ a source-filter model. This allows a

more efficient coding of the acoustic inventory, as well as more

flexibility in modifying the parameters at unit transitions by

doing interpolation of the filter parameters.

The filter is implemented as a time-varying sequence of LPC

vectors. Each LPC vector is quantized to reduce storage (At

11kHz sampling rate, 14 LPC coefficients are transformed to

LSF and quantized with 4 codebooks of 256 entries each). For

unvoiced segments the LPC vectors are spaced uniformly and for

voiced regions the frames are centered at each pitch epoch

(obtained with the aid of a laryngograph signal [6]). In both cases

a Hanning window of fixed length is used.

Source modeling is done differently for voiced and unvoiced

regions. For unvoiced segments, the source is white Gaussian

noise. For voiced segments, the source is the convolution of a

train of impulses with a time-varying excitation. Pitch can be

changed by controlling the separation between impulses. The

time-varying excitation is described in the frequency domain as

the sum of a purely voiced component and colored random noise.

The voiced component is the sum of independent frequency sub-

bands that have been vector-quantized separately. The excitation

codebooks are designed to minimize the error when

reconstructing the original units. The use of mixed excitation can

improve naturalness for voiced fricatives and other voiced

sounds with relatively large aspiration noise, and its energy is

derived from the quantization error. By using this integrated

synthesis/coding framework, we can achieve naturalness and

keep the acoustic inventory to less than 1MB.

4. SUMMARY

For ongoing research to further improve Whistler, we are

experimenting with our Natural Language Understanding System

[8] to improve our text analysis and prosody models. We are also

experimenting with longer units with senonic baseforms for

difficult contexts (like vowel-vowel transitions) and/or frequent

contexts (like the most frequent triphones or words). Each

senone becomes essentially our basic building block and we can

use it to construct syllable/word/phrase dependent triphone

sequences. These specific senone sequences can be used to cover

these most needed acoustic units while each individual senone

can still be shared for other generic contexts in our multiple

instance stochastic unit framework.

Our preliminary work indicated that we can effectively leverage

speech recognition technology to significantly improve the

naturalness of TTS systems. Whistler benefited substantially

from stochastic learning techniques that have been widely used

in speech recognition. The data-driven approach could help to

create speech output that has a paradigm-shift impact. We think

that factors such as speaking style, utterance situation and the

speaker's mental states could all be modeled in Whistler’s

stochastic data-driven framework in the future.

5. REFERENCES

[1] Allen J., Hunnicutt S., and Klatt D. From text to speech: the

MITalk system. MIT Press, Cambridge, MA, 1987.

[2] Bailly G. and Benoit C., editors. Talking Machines:

Theories, Models, and Designs. Elsevier Science, 1992.

[3] Donovan R.E. and Woodland P.C. “Improvements in an

HMM-Based Speech Synthesizer”. Proceedings of

Eurospeech Conference, Madrid, Spain, 1995, pages 573-

576.

[4] Hirschberg J. “Pitch accent in context: Predicting

intonational prominence from text”. Artificial Intelligence,

63:305-340, 1993.

[5] Huang X., Acero A., Alleva F., Hwang M.Y., Jiang L. and

Mahajan M. “Microsoft Windows Highly Intelligent Speech

Recognizer: Whisper”. IEEE International Conference on

Acoustics, Speech, and Signal Processing. Detroit, May

1995.

[6] Huang X., Acero A., Adcock J., Hon H., Goldsmith J., Liu

J., and Plumpe M. “Whistler: A Trainable Text-to-Speech

System”. International Conference on Spoken Language

Processing. Philadelphia, Oct, 1996.

[7] Hwang, M.Y. and Huang, X. and Alleva, F. “Predicting

Unseen Triphone with Senones”. IEEE International

Conference on Acoustics, Speech, and Signal Processing,

Minneapolis, MN, pages 311-314. April, 1993.

[8] Jensen K., Heidorn G., and Richardson S. Natural

Language Processing: The PLNLP Approach, Kluwer

Academic Publishers, 1993.

[9] Klatt D. “Review of text-to-speech conversion for English”.

Journal of the Acoustical Society of America, 82(3):737-

793, 1987.

[10] Microsoft Research’s Speech Technology Group web page:

http://www.research.microsoft.com/research/srg/.

[11] Nakajima S. and Hamada H. “Automatic generation of

synthesis units based on context oriented clustering”. IEEE

International Conference on Acoustics, Speech, and Signal

Processing. New York, April 1988, pages 659-662.

[12] Pierrehumbert J. “Synthesizing intonation”. Journal of the

Acoustical Society of America, 70:985-995, 1981.

[13] Ross K. N. “Modeling of Intonation for Speech Synthesis”.

Ph.D. thesis, Boston University, 1995.

[14] Sagisaka Y., Kaiki N., Iwahashi N. and Mimura. K. “ATR

v-Talk speech synthesis system”. International Conference

on Spoken Language Systems, Banff, Canada, 1992, pages

483-486.

[15] Sproat R., Hirschberg J., and Yarowsky D. “A corpus-based

synthesizer”. International Conference on Spoken Language

Systems, Banff, Canada, 1992, pages 563-566.

[16] Van Coile B. “On the Development of Pronunciation Rules

for Text-to-Speech Synthesis”. Proceedings of Eurospeech

Conference, Berlin, Sep 1993, pages 1455-1458

