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ABSTRACT

Whistler Text-to-Speech engine was designed so that we can

automatically construct the model parameters from training data. 

This paper will focus on recent improvements on prosody and 

acoustic modeling, which are all derived through the use of 

probabilistic learning methods. Whistler can produce synthetic

speech that sounds very natural and resembles the acoustic and 

prosodic characteristics of the original speaker. The underlying

technologies used in Whistler can significantly facilitate the 

process of creating generic TTS systems for a new language, a

new voice, or a new speech style. Whisper TTS engine supports 

Microsoft Speech API and requires less than 3 MB of working

memory.
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1. INTRODUCTION

Although Text-to-Speech (TTS) systems today have achieved a

high level of intelligibility, their unnatural prosody and synthesis

voice quality still prevent them from being widely deployed in

man-machine communication. In addition, the process of 

building a new synthesis voice often is highly labor-intensive. 

For prosody modeling, most traditional TTS systems use

linguistic rules to define the prosody parameters [9][12]. Only

limited natural language processing is generally used prior to 

prosody parameter generation. These rule-based prosody models 

tend to sound robotic. Moreover, while these rules may have 

been derived from speech of a donor speaker, the resulting

synthetic prosody typically does not resemble the prosody of the 

original speaker. To increase naturalness, stochastic learning 

techniques such as decision trees [2][4][13][14] have been

recently proposed to learn the prosody from a hand-labeled 

prosody corpus. Nonetheless, the creation of a prosody-labeled

corpus remains a labor-intensive process. 

For speech generation, there are two main methods used: formant

synthesis [1] and concatenative synthesis [2][14][15]. Formant

synthesizers use a simple model of speech production and a set 

of rules to generate speech. While these systems can achieve

high intelligibility, their naturalness is typically low, since it is 

very difficult to accurately describe the process of speech

generation in a set of rules. In recent years, data-driven 

approaches such as concatenative synthesis have achieved a

higher degree of naturalness. Nevertheless, these speech units are

still tediously extracted by human experts. As there are

thousands of possible co-articulation contextual variations, the 

process of creating a good quality TTS system often takes years.

Formant synthesizers may sound smoother than concatenative

synthesizers because they do not suffer from the distortion

encountered at the concatenation point. To reduce this distortion, 

concatenative synthesizers often select their units from carrier

sentences, or monotone speech, and/or perform spectral

smoothing, all of which can lead to a decrease of naturalness.

The resulting synthetic speech may not resemble the donor 

speaker in the training database.

Another data-driven approach used to minimize the number of

concatenation points is to select large units, such as syllables or 

words. While this approach allows for excellent voice quality, it

results in a large non-scaleable system, and it does not generalize 

well to new acoustic contexts. 

Figure 1. Block diagram of the Whistler TTS system.

The left part represents the run-time synthesis, while the

right part represents the analysis phase.

The objective of Microsoft’s Whistler (Whisper Highly

Intelligent Stochastic TaLkER) TTS system [6][10] is to make

the system completely trainable. We will discuss the underlying

technology used in Whistler and its most recent improvements.

Our goal is to leverage our work in the Whisper speech

recognition system [5] to make Whistler trainable, scaleable and 

natural. Our current implementation used the text analysis

component derived from Lernout & Hauspie’s commercial TTS

engine [16]. A block diagram of Whistler can be seen in Fig. 1.

The left part of the diagram corresponds to the run-time part of 

the system, whereas the right part corresponds to the analysis



module. The analysis phase is required to obtain the inventory of 

acoustic units and to determine the parameters of the prosody 

model.

Our data-driven approach takes advantage of the analysis of 

large amounts of natural speech and avoids the over-generation 

problem found in traditional hand-tuned systems. Our methods 

not only improved naturalness but also decreased the time 

required to create a new voice, and made the synthetic speech 

similar to the original donor speaker. We were also able to build 

a highly scaleable system, which can tradeoff voice quality and 

memory size; generality and specificity. 

This paper is organized as follows. In Section 2 we discuss 

Whistler’s front-end, and our corpus-based prosody model. In 

Section 3 we then describe Whistler’s back-end, and how we 

extract acoustic units from the corpus. Finally we summarize our 

major findings and outline our future work. 

2. WHISTLER’S FRONT-END 

2.1 Text Analysis Model 

We have used a text analysis component derived from Lernout & 

Hauspie’s commercial TTS system [16]. This component 

performs efficient text analysis functions, including text 

normalization, grapheme-to-phoneme conversion, part-of-speech 

tagging, moderate grammatical analysis, and intonational 

specifier generation. The Whistler prosody model assigns pitch 

contours to input sentences based on the analysis this component 

provides. Alternative text analysis modules may be easily 

substituted in future versions. 

2.2 Prosody Model 

The prosodic patterns of speech can be modeled by predicting 

several accentual classes of syllables. These classes are 

characterized by their phonological, grammatical, and contextual 

properties, as well as by tonal markings or tones that occur on 

most syllables: a high tone (H), a low tone (L), combinations of 

H and L, or unmarked (*) [12]. Further additional special 

markings can be used for syllables in words ending a phrase or 

sentence. 

For clarity, we define: 

Clause as a linguistic phrase of N syllables, forming a 

natural pause-bounded unit;

Clause Specification Vector S as an N-dimensional 

vector of the tones and other context features for each of 

the clause’s syllables; and  

Clause Pitch Vector P as an N-dimensional vector of 

the F0 values for each syllable of the corresponding 

vector S.

The runtime model is scaleable. In its most comprehensive form, 

it consists of a very large set of S:P pairs derived from a 

professional speaker’s reading of a variety of text genres in a 

uniform style. These are supplemented by a phrase specification 

table, which captures general characteristics of representative 

very short phrases of a wide variety of types and contexts. The 

phrase specification table is used to generate high-quality 

defaults as described below. In its most minimal form, the 

runtime system relies on the phrase specification table alone for 

contour generation. 

The prosody generation module has the following components: 

Clause Specification. Given an input clause analysis of 

an input i of N syllables, consisting of lexical stress 

marks and the annotations produced by the text analysis 

module, this component generates an N-dimensional 

clause specification vector S(i).

Prosody Contour Generation. We then select the 

specifier S from the donor’s database which is most 

similar to the input vector S(i). We use its 

corresponding prosody vector P to generate the pitch 

contour anchor points. If no clause pattern in the 

database S:P is sufficiently close by the matching 

metric, every individual syllable in the input string will 

be assigned a high quality default pitch, based on the 

phrase context of each as indexed by the phrase 

specification table. The phrase specification table will 

also be used when the system is running in minimized 

mode, without the S:P database present. 

Stochastic Variation. When an exact specification 

vector match is not present, or when running in 

minimized mode with only the phrase specification 

table, stochastic variation is applied to the anchor values 

obtained from either the (partially mismatched) vector P

for S(i) or from the phrase specification table.  

Contour Interpolation and Smoothing. Interpolation

across unspecified phonemes and smoothing over a 

short window across the clause are then applied for a 

more natural effect. 

While prosody parameters generally refer to pitch, duration and 

amplitude, we found that with our rich context-dependent units 

(see Section 3.1), the use of the unit-based amplitude and 

duration resulted in fairly natural speech.  

To obtain the various clause specification vectors, we need to 

assign tones and other contextual feature annotations to each 

syllable in the training database. Because doing this by human 

inspection is a labor intensive process, and because in the 

synthesis process the prosody module has to derive the 

specification vector S(i) directly from input text, we have 

experimented with consistent use of the text analysis module for 

annotation of  the training data as well. In combination with a 

carefully constructed recording script, and a well-trained 

speaker, this has resulted in acceptable levels of consistency 

between linguistic feature annotation and the speaker’s 

recording, in representative samples. Where variance has been 

found, it appears to be systematic, providing a consistent effect 

of individual style. The pitch vector P for each clause is derived 

by representative sampling of salient points from each syllable of 

the speaker’s recorded utterances. 

The assignment of the template closest to the input specification 

vector is straightforward when there is an exact match of 

annotation features. Otherwise, a dynamic programming 

algorithm is used in conjunction with a cost function (distortion 

measure) to align tonal vectors of different length or type. The 

cost function values are derived under plausible assumptions 

regarding intonational structure. For instance, the cost of 



mismatching a right-edge boundary tone (say the extra-high H at 

the end of certain yes-no questions) is much higher than having 

to interpolate over a ‘missing’ unaccented syllable earlier in the 

clause. 

The sentences in the training script are selected to correspond to 

statistically frequent tonal patterns in natural speech. We have 

derived approximately 10,000 different clause specifiers from 

our 6,000-sentence corpus. Coverage of these for test texts 

ranges from 40% to 80%, depending on the cost threshold set in 

the matching process, with the remainder being made up as high-

quality defaults from the phrase specification table, described 

above.

Whistler’s data-driven model has resulted in a relatively natural 

prosody. The prosodic speaking style can be readily identified 

when used in conjunction with the units extracted from the same 

speaker that are described in the following section. 

3. WHISTLER’S BACK-END 

3.1 Unit Generation 

Concatenative synthesizers accomplish unit generation by cutting 

speech segments from a database recorded by a target speaker 

[11]. There are three phases in the process of building a unit 

inventory: 

Conversion between a phoneme string and a unit string. 

Segmentation of each unit from spoken speech. 

Selection of a good unit instance when many are 

available in the corpus. 

Traditionally, the conversion between a phoneme string and a 

unit string has been handled by defining the unit as a diphone,

which contains the transition between two phones. In English 

there are about 1500 to 2000 diphones, and given this choice of 

unit the mapping is straightforward. While the choice of the 

diphone as the basic unit retains the transitional information, 

there can be large distortions due to the difference in spectra 

between the stationary parts of two units obtained from different 

contexts. As evidenced in today’s diphone-based systems, 

naturalness of synthetic speech can be sometimes significantly 

hampered by the context mismatch of diphone units. Once the set 

of units has been decided, the database is traditionally manually 

segmented into those diphone units, a labor-intensive process. In 

addition, selection of the representative diphone units can only 

be done on a trial and error basis, which doesn’t usually address 

the potential distortion at any concatenation point. 

To achieve a more natural voice quality, one must take more 

contexts into account, going beyond diphones. However, simply 

modeling triphones (a phone with a specific left and right 

context) already requires more than 10,000 units for English. 

Fortunately, effective clustering of similar contexts modeled in a 

sub-phonetic level, to allow flexible memory-quality 

compromise, has been well studied in the speech recognition 

community [5]. Whistler uses decision tree based senones [3][7] 

as the synthesis units. A senone is a context-dependent sub-

phonetic unit which is equivalent to a HMM state in a triphone 

(which can be easily extended to more detailed context-

dependent phones, like quinphone). A senone could represent an 

entire triphone if a 1-state HMM is used to model each phoneme. 

The senone decision trees are generated automatically from the 

analysis database to obtain minimum within-unit distortion (or 

entropy). As widely used in speech recognition, the use of 

decision trees will generalize to contexts not seen in the training 

data based on phonetic categories of neighboring contexts, yet 

will provide detailed models for contexts that are represented in 

the database. 

To segment the speech corpus we used the speech features 

developed in Whisper [5] to align the input waveform with 

phonetic symbols that are associated with HMMs states. HMMs 

are trained from the speaker-dependent data of the target speaker. 

Our training database for unit selection contains about 6,000 

phonetically balanced sentences, recorded in natural style. Both 

the decision tree and hidden Markov models are trained with the 

speaker-dependent data. With our current training database, we 

noticed that 4% of the training sentences contain some gross 

segmentation errors (larger than 20 ms) when compared to hand 

labeled data, which were mostly caused by incorrect 

transcriptions. Nevertheless, good context coverage and 

consistent segmentation by HMMs typically overcomes the 

drawback of an imperfect automatic segmentation when 

compared to manual segmentation. 

To select good unit instances when many are available, we first 

compute unit statistics for amplitude, pitch and duration, and 

remove those instances far away from the unit mean. Of the 

remaining unit instances, a small number can be selected through 

the use of an objective function. In our current implementation, 

the objective function is based on HMM scores. During runtime, 

the synthesizer could either concatenate the best units pre-

selected in the off-line analysis or dynamically select the senone 

instance sequence that minimizes a joint distortion function. The 

joint distortion function is a combination of HMM score, unit 

concatenation distortion and prosody mismatch distortion. 

Experiments indicate that our multiple instance based synthesizer 

significantly improve the naturalness and overall quality over 

traditional single instance diphone synthesizer because of its rich 

context modeling, including phonetic, spectral and prosodic 

contexts. The Whistler system is highly scaleable because the 

number of senones and instances per senone can be determined 

based on a balance of quality versus memory resources. 

One interesting note is that we conducted some experiments 

comparing data recorded with natural and monotone pitch. On 

the contrary to the common belief that monotone recording is 

critical to derive acoustic units, we have not observed any 

significant improvement using monotone recording. This is 

probably because of our detailed context models. 

3.2 Speech Synthesis 

For synthesis we employ a source-filter model. This allows a 

more efficient coding of the acoustic inventory, as well as more 

flexibility in modifying the parameters at unit transitions by 

doing interpolation of the filter parameters. 

The filter is implemented as a time-varying sequence of LPC 

vectors. Each LPC vector is quantized to reduce storage (At 

11kHz sampling rate, 14 LPC coefficients are transformed to 

LSF and quantized with 4 codebooks of 256 entries each). For 

unvoiced segments the LPC vectors are spaced uniformly and for 



voiced regions the frames are centered at each pitch epoch 

(obtained with the aid of a laryngograph signal [6]). In both cases 

a Hanning window of fixed length is used. 

Source modeling is done differently for voiced and unvoiced 

regions. For unvoiced segments, the source is white Gaussian 

noise. For voiced segments, the source is the convolution of a 

train of impulses with a time-varying excitation. Pitch can be 

changed by controlling the separation between impulses. The 

time-varying excitation is described in the frequency domain as 

the sum of a purely voiced component and colored random noise. 

The voiced component is the sum of independent frequency sub-

bands that have been vector-quantized separately. The excitation 

codebooks are designed to minimize the error when 

reconstructing the original units. The use of mixed excitation can 

improve naturalness for voiced fricatives and other voiced 

sounds with relatively large aspiration noise, and its energy is 

derived from the quantization error. By using this integrated 

synthesis/coding framework, we can achieve naturalness and 

keep the acoustic inventory to less than 1MB. 

4. SUMMARY

For ongoing research to further improve Whistler, we are 

experimenting with our Natural Language Understanding System 

[8] to improve our text analysis and prosody models. We are also 

experimenting with longer units with senonic baseforms for 

difficult contexts (like vowel-vowel transitions) and/or frequent 

contexts (like the most frequent triphones or words). Each 

senone becomes essentially our basic building block and we can 

use it to construct syllable/word/phrase dependent triphone 

sequences. These specific senone sequences can be used to cover 

these most needed acoustic units while each individual senone 

can still be shared for other generic contexts in our multiple 

instance stochastic unit framework. 

Our preliminary work indicated that we can effectively leverage 

speech recognition technology to significantly improve the 

naturalness of TTS systems. Whistler benefited substantially 

from stochastic learning techniques that have been widely used 

in speech recognition. The data-driven approach could help to 

create speech output that has a paradigm-shift impact. We think 

that factors such as speaking style, utterance situation and the 

speaker's mental states could all be modeled in Whistler’s 

stochastic data-driven framework in the future. 
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