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Analysis of Arithmetic Analysis of Arithmetic 
RoundRound--Off ErrorsOff Errors

• In the fixed-point implementation of a 
digital filter only the result of the 
multiplication operation is quantized

• The representation of a practical multiplier 
with the quantizer at its output is shown 
below
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Analysis of Arithmetic Analysis of Arithmetic 
RoundRound--Off ErrorsOff Errors

• The statistical model of the multiplier with 
the quantizer at its output is as shown below

• The output v[n] of the ideal multiplier is 
quantized to a value        , where][ˆ nv
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Analysis of Arithmetic Analysis of Arithmetic 
RoundRound--Off ErrorsOff Errors

• For analysis purposes, the following 
assumptions are made:
(1)  The error sequence              is a sample 
sequence of a stationary white noise 
process, with each sample            being 
uniformly distributed over the range of the 
quantization error
(2) The error sequence              is 
uncorrelated with the sequence {v[n]}, the 
input sequence {x[n]}, and all other 
quantization noise sources
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RoundRound--Off ErrorsOff Errors

• Recall that the assumption of               being 
uncorrelated with  {v[n]} holds only for 
rounding and two’s-complement truncation
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Representation of a
digital filter structure
with product round-off
before summation
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• The noise analysis model also shows the 
internal r-th branch node associated with 
the signal variable          that needs to be 
scaled to prevent overflow at this node

• These nodes are typically the inputs to the 
multipliers as indicated below
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Analysis of Arithmetic Analysis of Arithmetic 
RoundRound--Off ErrorsOff Errors

• In digital filters employing two’s-
complement arithmetic, these nodes are 
outputs of adders forming sums of products, 
as here the sums will still have the correct 
values even though some of the products 
and/or partial sums overflow

• It is assumed the error sources are 
statistically independent of each other and 
thus, each error source develops a round-off 
noise at the output of the digital filter
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Statistical model of a 
digital filter structure 
with product round-offs
before summation
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• Notations:
• - impulse response from the digital 

filter input to the r-th branch node
• - impulse response from the input of 

the  -th adder to the digital filter output
• - z-transform of          , 

called the scaling transfer function
• - z-transform of          , 

called the noise transfer function
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• If        denotes the variance of each 
individual noise source at the output of each 
multiplier, the variance of          is simply

• Variance of the output noise caused by         
is then given by
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• If there are L such adders in the digital filter 
structure, the total output noise power due 
to all product round-offs is given by

• If product round-off is carried out after the 
summation of products, then

∑
=

∫ ⎟
⎠
⎞⎜

⎝
⎛= −−

L
dzzzGzG

jo
C

k
1

)()(
2
122 11

l
l llπγ σσ

∑
=

∫ ⎟
⎠
⎞⎜

⎝
⎛= −−

L
dzzzGzG

jo
C1

)()(
2
122 11

l
llπγ σσ

Copyright © 2005 S. K. Mitra11

Analysis of Arithmetic Analysis of Arithmetic 
RoundRound--Off ErrorsOff Errors

+
1m

lkm ][nvl

][nx ][ˆ ny

][nur

Q

Representation of a digital
filter structure with product
round-offs after summation

Copyright © 2005 S. K. Mitra12

Analysis of Arithmetic Analysis of Arithmetic 
RoundRound--Off ErrorsOff Errors

• Example - For the first-order digital filter 
structure shown below on the left, the 
model for the product round-off error 
analysis is shown on the right
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• From the noise analysis model it can be 
seen that the noise transfer function            
is the same as the filter transfer function 
H(z), i.e.,

• Thus, the output noise variance due to the 
product round-off is same as that due to 
input quantization computed earlier:
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• The quantity                          is called the 
noise gain or the normalized round-off
noise variance

• Example - We now evaluate the output 
noise power of the direct form II realization 
of a causal second-order transfer function:
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Analysis of Arithmetic Analysis of Arithmetic 
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• The direct form II realization is shown 
below on the left and the model for error 
analysis is shown on the right
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• The noise transfer functions             and          
are same as the transfer function H(z)

of the digital filter
• A direct partial-fraction expansion of H(z) is
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• Using the algebraic computation outlined 
earlier we get
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• In terms of the pole locations          , we 
have                          and

• Substituting these values in the expression 
for          we get
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• If the poles are close to the unit circle, i.e.,    
where ε is a very small positive 

number, we can express           as

• Thus, as the poles get closer to the unit 
circle,            , the total output noise power 
increases rapidly
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Dynamic Range ScalingDynamic Range Scaling

• In a digital filter implemented using fixed-
point arithmetic, overflow may occur at 
certain internal nodes such as inputs to 
multipliers and/or the adder outputs

• Occurrence of overflows may lead to large 
amplitude oscillations at the filter output 
causing unsatisfactory operations

Copyright © 2005 S. K. Mitra21

Dynamic Range ScalingDynamic Range Scaling
• Probability of overflow can be minimized 

significantly by properly scaling the internal 
signal levels with the aid of scaling 
multipliers

• In many cases, most of these multipliers can 
be absorbed with existing multipliers in the 
structure, thus reducing the total number of 
multipliers needed to implement the scaled 
filter

Copyright © 2005 S. K. Mitra22

Dynamic Range ScalingDynamic Range Scaling
• To understand the basic concepts involved 

in scaling, consider the structure given 
below showing explicitly the r-th node 
variable           that needs to be scaled][nur
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Dynamic Range ScalingDynamic Range Scaling

• All fixed-point numbers are assumed to be 
represented as binary fractions

• Input sequence is assumed to be bounded by 
unity, i.e.,

• Objective of scaling is to ensure that
nnx ofvaluesallfor,1][ ≤

nrnur ofvaluesallforandallfor,1][ ≤
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Dynamic Range ScalingDynamic Range Scaling
• Three different conditions can be derived to 

ensure that            satisfies the above bound
• An Absolute Bound -
• Now

• From the above we get
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Dynamic Range ScalingDynamic Range Scaling
• Thus the condition                is satisfied if

• The above condition is both necessary and 
sufficient to guarantee no overflow

• If this condition is not satisfied in the 
unscaled realization, the input signal can be 
scaled with a multiplier K of value 
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Dynamic Range ScalingDynamic Range Scaling

• The scaling rule developed is based on a 
worst case bound and does not fully utilize 
the dynamic range of all adder output 
registers             significant reduction in SNR

• It is difficult to compute the value of K
analytically

• Approximate value can be computed by 
replacing the infinite sum with a finite sum 
for a stable filter
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Dynamic Range ScalingDynamic Range Scaling
• More practical and easy to use scaling rules 

can be derived in the frequency domain if 
some information about the input signals is 
known a priori

• Define the      -norm (        ) of a Fourier 
transform              as
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• , the      -norm, is the root-mean-
squared (rms) value of               over 

• , the      -norm, is the mean absolute 
value of              over

• exists for a continuous        
and is given by
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• A more realistic bound is derived next 

assuming that the input x[n] is a deterministic 
signal with a DTFT

• -Bound
• Now from                                           we get

where                and                are the DTFTs
of          and          , respectively
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Dynamic Range ScalingDynamic Range Scaling
• The inverse Fourier transform of

yields

• Thus,
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Dynamic Range ScalingDynamic Range Scaling
• Thus, if              , the dynamic range 

constraint                 is satisfied if

• Hence, if the mean absolute value of the 
input spectrum is bounded by unity, then 
there will be no adder overflow if the peak 
gains from the filter input to all adder 
outputs are scaled to satisfy

• In general, this scaling rule is rarely used 
since in practice              does not hold
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• - Bound
• Applying the Schwartz inequality to

we get

2L

∫
−

=
π

π

ωωω ω
π

deeXeFnu njjj
rr )()(

2
1][

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≤ ∫∫

−−

π

π

ω
π

π

ω ω
π

ω
π

deXdeF jj
r

22
)(

2
1)(

2
1

2][nur

Copyright © 2005 S. K. Mitra33

Dynamic Range ScalingDynamic Range Scaling
• or equivalently,

• Thus, if the input to the filter has finite 
energy bounded by unity, i.e.,              , then 
the adder overflow can be prevented by 
scaling the filter such that the rms values of 
all scaling transfer functions from the input 
to all adder outputs are bounded by unity, 
i.e.,
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• A General Scaling Rule -
• Obtained using Holder’s inequality is given 

by

where               satisfying
• Note:       -bound is obtained when            

and q = 1
and      -bound is obtained when p = 2
and q = 2

• Another useful scaling rule,      -bound is 
obtained when p = 1 and
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• After scaling, the scaling transfer functions 

become            and the scaling constants 
should be chosen such that

• In many structures, all scaling multipliers 
can be absorbed into the existing 
feedforward multipliers without any 
increase in the total number of multipliers, 
and hence, noise sources

RrF pr ,,2,1,1 K
(
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)(zFr
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• In some cases, the scaling process may 
introduce additional multipliers in the system

• If all scaling multipliers are b-bit units, then

can be satisfied with an equality sign, 
providing a full utilization of the dynamic 
range of each adder output and thus yielding 
a maximum SNR

RrF pr ,,2,1,1 K
(
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• An attractive option from a hardware point 

of view is to make as many unabsorbed 
scaling multipliers as possible in the scaled 
structure take a value that is a power of 2

• In which case, these scaling multipliers can 
be implemented simply by a shift operation

• The norm of the scaling transfer function 
for these multipliers then satisfies

with a slight decrease in the SNR
12

1 ≤< prF
(
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Scaling of a Cascade Form Scaling of a Cascade Form 
IIR Digital Filter StructureIIR Digital Filter Structure

• Consider the unscaled structure consisting 
of R second-order IIR sections realized in 
direct form II
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Scaling of a Cascade Form Scaling of a Cascade Form 
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• Its transfer function is given by

where
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Scaling of a Cascade Form Scaling of a Cascade Form 
IIR Digital Filter StructureIIR Digital Filter Structure

• The branch nodes to be scaled are marked 
by        which are seen to be the inputs to 
the multipliers in each second-order section

• The scaling transfer functions are given by

)*(

∏
−

=
==

1

1
,,2,1),(

)(
)(

r

r
r RrzH

zA
KzF

l
l K

Copyright © 2005 S. K. Mitra41

Scaling of a Cascade Form Scaling of a Cascade Form 
IIR Digital Filter StructureIIR Digital Filter Structure

• The scaled version of the cascade structure 
is shown below

1−z

1−z

+

+

+

+

1−z

1−z

+

+

+

+

)(zFR
(

)(1 zF
(

)(zX )(zY
()*( )*(K

(

11a−

21a− Ra2−

Ra1−
Rb1

(

Rb2
(

11b
(

21b
(

01b
(

Rb0
(

Copyright © 2005 S. K. Mitra42

Scaling of a Cascade Form Scaling of a Cascade Form 
IIR Digital Filter StructureIIR Digital Filter Structure

• The scaling process has introduced a new 
multiplier       in each second-order section

• If the zeros of the transfer function H(z) are 
on the unit circle, as is usually the case, then

• In which case we can choose                      
to reduce the total number of multipliers in 
the final scaled structure
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Scaling of a Cascade Form Scaling of a Cascade Form 
IIR Digital Filter StructureIIR Digital Filter Structure

• From the scaled structure it can be seen that

where
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Scaling of a Cascade Form Scaling of a Cascade Form 
IIR Digital Filter StructureIIR Digital Filter Structure

• Denote

and choose the scaling constants as
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Scaling of a Cascade Form Scaling of a Cascade Form 
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• Then
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Scaling of a Cascade Form Scaling of a Cascade Form 
IIR Digital Filter StructureIIR Digital Filter Structure

• After scaling we require

• Solving the above we get
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Dynamic Range Scaling Using Dynamic Range Scaling Using 
MATLABMATLAB

• Dynamic range scaling using the      -norm 
rule can be easily carried out using 
MATLAB by simulating the digital filter 
structure

• Denote the impulse response from the input 
to the r-th branch node as

• Assume that the branch nodes have been 
ordered in accordance with their precedence 
relations with increasing r

]}[{ nfr
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Dynamic Range Scaling Using Dynamic Range Scaling Using 
MATLABMATLAB

• Compute first the      -norm          of          
and scale the input by a multiplier

• Next, compute the      -norm         of          
and scale the multipliers feeding into then 
second adder by dividing with a constant

• Continue the process until the output node 
has been scaled to yield an     -norm of unity

2L 21F ]}[{ 1 nf

211 Fk =

2L

222 Fk =

22F ]}[{ 2 nf

2L



9

Copyright © 2005 S. K. Mitra49

Dynamic Range Scaling Using Dynamic Range Scaling Using 
MATLABMATLAB

• Example - Consider the cascade realization 
of
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Dynamic Range Scaling Using Dynamic Range Scaling Using 
MATLABMATLAB

k1 = 1; k2 = 1; k3 = 1;
x1 = 1/k1;
si1 = 0; si2 = [0 0];
varnew = 0; k= 1
while k > 0.0001

y1 = 9.2593284*si1 + x1;
x2 = (0.0662272/k2) *(y1 + si1);
si1 = y1;
y2 = 0.6762858*si2(1) - 0.3917468*si2(2) + x2;
si2(2) = si2(1); si2(1) = y2;
varold = varnew;
varnew = varnew + abs(y1)*abs(y1);
k = varnew - varold;
x1 = 0;

end
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Dynamic Range Scaling Using Dynamic Range Scaling Using 
MATLABMATLAB

• The MATLAB program simulating the 
cascaded structure is given by Program 9_6 
in text

• The program is first run with all scaling 
constants set to unity, i.e., k1 = k2 = k3 =1

• In the statement computing the approximate 
value of the      -norm, the output variable is 
chosen as y1

• The program computes the square of the     -
norm at node y1 as 1.07210002757252

2L

2L
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Dynamic Range Scaling Using Dynamic Range Scaling Using 
MATLABMATLAB

k1 = sqrt(1.07210002757252); k2 = 1; k3 = 1;
x1 = 1/k1;
si1 = 0; si2 = [0 0];
varnew = 0; k= 1
while k > 0.0001

y1 = 9.2593284*si1 + x1;
x2 = (0.0662272/k2) *(y1 + si1);
si1 = y1;
y2 = 0.6762858*si2(1) - 0.3917468*si2(2) + x2;
si2(2) = si2(1); si2(1) = y2;
varold = varnew;
varnew = varnew + abs(y1)*abs(y1);
k = varnew - varold;
x1 = 0;

end
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• For the next run of the program, we set k1 =
with other scaling 

constants still set to unity
• A second run of the program shows the      -

norm of the impulse response at node y1 as 
1.0 verifying the success of scaling the 
input

• In the second step, in the statement
computing the approximate value of the      -
norm, the output variable is chosen as y2

72520721000275.1=

2L

2L
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k1 = sqrt(1.07210002757252); k2 = 1; k3 = 1;
x1 = 1/k1;
si1 = 0; si2 = [0 0];
varnew = 0; k= 1
while k > 0.0001

y1 = 9.2593284*si1 + x1;
x2 = (0.0662272/k2) *(y1 + si1);
si1 = y1;
y2 = 0.6762858*si2(1) - 0.3917468*si2(2) + x2;
si2(2) = si2(1); si2(1) = y2;
varold = varnew;
varnew = varnew + abs(y2)*abs(y2);
k = varnew - varold;
x1 = 0;

end
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• The program yields the square of the      -
norm of the impulse response at node y2 as 
0.02679820762398, which is used to set k2

with k3 still set to 
unity

23980267982076.0=

2L
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k1 = sqrt(1.07210002757252);
k2 = sqrt(0.2679820762398); k3 = 1;
x1 = 1/k1;
si1 = 0; si2 = [0 0];
varnew = 0; k= 1
while k > 0.0001

y1 = 9.2593284*si1 + x1;
x2 = (0.0662272/k2) *(y1 + si1);
si1 = y1;
y2 = 0.6762858*si2(1) - 0.3917468*si2(2) + x2;
si2(2) = si2(1); si2(1) = y2;
varold = varnew;
varnew = varnew + abs(y3)*abs(y3);
k = varnew - varold;
x1 = 0;

end
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• The process is repeated for node y3, 
resulting in k3

• The final value of the      -norm of the 
impulse response at node y3 is 0.99999683

89439697540060.11=

2L
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k1 = sqrt(1.07210002757252);
k2 = sqrt(0.2679820762398); k3 = sqrt(11.9675400608943);
x1 = 1/k1;
si1 = 0; si2 = [0 0];
varnew = 0; k= 1
while k > 0.0001

y1 = 9.2593284*si1 + x1;
x2 = (0.0662272/k2) *(y1 + si1);
si1 = y1;
y2 = 0.6762858*si2(1) - 0.3917468*si2(2) + x2;
si2(2) = si2(1); si2(1) = y2;
varold = varnew;
varnew = varnew + abs(y3)*abs(y3);
k = varnew - varold;
x1 = 0;

end
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• Program 9_6 can be easily modified to 
calculate the product round-off noise variance 
at the output of the scaled  structure

• To this end, we set the digital filter input to 
zero and apply an impulse at the input of the 
first adder

• This is equivalent to setting x1 = 1 in the 
program

• The normalized output noise variance due to a 
single noise source is 1.077209663042567
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• Next, we apply an impulse at the input of 
the second adder with the  digital filter input 
set to zero

• This is achieved by replacing x2 in the 
calculation of y2 with x1

• The program yields the normalized output 
noise variance due to a single error source 
at the second adder as 1.26109014071707
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• The total normalized output noise variance, 
assuming all products to be quantized 
before addition, is

• On the the hand, for quantization after 
addition of products, the total normalized 
output noise variance is

317072610901407.1425670720966304.12 +×+×

117072610901407.125670720966304.1 ++
2743318677114.3=

19621885538237.10=
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Product RoundProduct Round--Off Noise Off Noise 
Calculation Using MATLABCalculation Using MATLAB

• Example - We interchange the locations of 
the two sections in the cascade
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• In this case, the total normalized output 
noise variance, assuming all products to be 
quantized before addition, is

• On the the hand, for quantization after 
addition of products, the total normalized 
output noise variance is

7171242.927693895.045465221.13 =+×+×

3159116.317693895.05465221.1 =++


