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Analysis of Finite Analysis of Finite WordlengthWordlength
EffectsEffects

• Ideally, the system parameters along with 
the signal variables have infinite precision 
taking any value between         and

• In practice, they can take only discrete 
values within a specified  range since the 
registers of the digital machine where they 
are stored are of finite length

• The discretization process results in 
nonlinear difference equations 
characterizing the discrete-time systems

∞− ∞
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Analysis of Finite Analysis of Finite WordlengthWordlength
EffectsEffects

• These nonlinear equations, in principle, are 
almost impossible to analyze and deal with 
exactly

• However, if the quantization amounts are 
small compared to the values of signal 
variables and filter parameters, a simpler 
approximate theory based on a statistical 
model can be applied
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Analysis of Finite Analysis of Finite WordlengthWordlength
EffectsEffects

• Using the statistical model, it is possible to 
derive the effects of discretization and 
develop results that can be verified 
experimentally

• Sources of errors -
(1) Filter coefficient quantization
(2) A/D conversion
(3) Quantization of arithmetic operations
(4) Limit cycles
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Analysis of Finite Analysis of Finite WordlengthWordlength
EffectsEffects

• Consider the first-order IIR digital filter

where y[n] is the output signal and x[n] is 
the input signal

• When implemented on a digital machine, 
the filter coefficient α can assume only 
certain discrete values     approximating the 
original design value α
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Analysis of Finite Analysis of Finite WordlengthWordlength
EffectsEffects

• The desired transfer function is

• The actual transfer function implemented is

which may be much different from the 
desired transfer function H(z)
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Analysis of Finite Analysis of Finite WordlengthWordlength
EffectsEffects

• Thus, the actual frequency response may be 
quite different from the desired frequency 
response

• Coefficient quantization problem is similar 
to the sensitivity problem encountered in 
analog filter implementation
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Analysis of Finite Analysis of Finite WordlengthWordlength
EffectsEffects

• A/D Conversion Error - generated by the 
filter input quantization process

• If the input sequence x[n] has been obtained 
by sampling an analog signal         , then the 
actual input to the digital filter is

where e[n] is the A/D conversion error

)(txa
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Analysis of Finite Analysis of Finite WordlengthWordlength
EffectsEffects

• Arithmetic Quantization Error - For the 
first-order digital filter, the desired output of 
the multiplier is 

• Due to product quantization, the actual 
output of the multiplier of the implemented 
filter is

where           is the product roundoff error
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Analysis of Finite Analysis of Finite WordlengthWordlength
EffectsEffects

• Limit Cycles - The nonlinearity of the 
arithmetic quantization process may 
manifest in the form of oscillations at the 
filter output, usually in the absence of input 
or, sometimes, in the presence of constant 
input signals or sinusoidal input signals
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Quantization Process and Quantization Process and 
ErrorsErrors

• Two basic types of binary representations of 
data: (1) Fixed-point, and (2) Floating-point
formats

• Various problems can arise in the digital 
implementation of the arithmetic operations 
involving the binary data

• Caused by the finite wordlength limitations 
of the  registers storing the data and the 
results of arithmetic operations
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Quantization Process and Quantization Process and 
ErrorsErrors

• For example in fixed-point arithmetic, 
product of two b-bit numbers is 2b bits 
long, which has to be quantized to b bits to 
fit the prescribed wordlength of the registers

• In fixed-point arithmetic, addition operation 
can result in a sum exeeding the register 
wordlength, causing an overflow

• In floating-point arithmetic, there is no 
overflow, but results of both addition and 
multiplication may have to be quantized
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Quantization Process and Quantization Process and 
ErrorsErrors

• In both fixed-point and floating-point 
formats, a negative number can be 
represented in one of three different forms

• Analysis of various quantization effects on 
the performance of a digital filter depends on
(1) Data format (fixed-point or floating-point),          
(2) Type of representation of negative numbers,   
(3) Type of quantization, and                                 
(4) Digital filter structure implementing the transfer 
function
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Quantization Process and Quantization Process and 
ErrorsErrors

• Since the number of all possible combinations 
of the type of arithmetic, type of quantization 
method, and digital filter structure is very 
large, quantization effects in some selected 
practical cases are discussed

• Analysis presented can be extended easily to 
other cases
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Quantization Process and Quantization Process and 
ErrorsErrors

• In DSP applications, it is a common practice 
to represent the data either as a fixed-point 
fraction or as a floating-point binary number 
with the mantissa as a binary fraction

• Assume the available wordlength is (b+1) 
bits with the most significant bit (MSB) 
representing the sign

• Consider the data to be a (b+1)-bit fixed-
point fraction
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Quantization Process and Quantization Process and 
ErrorsErrors

• Representation of a general (b+1)-bit fixed-
point fraction is shown below

• Smallest positive number that can be 
represented in this format will have a least
significant bit (LSB) of 1 with remaining 
bits being all 0’s

∆

↓

−12
↓

−22
↓

−b2

s 1−a 2−a ba−•••
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Quantization Process and Quantization Process and 
ErrorsErrors

• Decimal equivalent of smallest positive 
number is

• Numbers represented with (b+1) bits are 
thus quantized in steps of       , called 
quantization step

• An original data x represented as a (β+1)-bit 
fraction is converted into a (b+1)-bit 
fraction Q(x) either by truncation or 
rounding

b−= 2δ

b−2
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Quantization Process and Quantization Process and 
ErrorsErrors

• The quantization process for truncation or 
rounding can be modeled as shown below

x Q(x)Q
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Quantization Process and Quantization Process and 
ErrorsErrors

• Since representation of a positive binary 
fraction is the same independent of format 
being used to represent the negative binary 
fraction, effect of quantization of a positive 
fraction remains unchanged

• The effect of quantization on negative 
fractions is different for the three different 
representations
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Quantization of FixedQuantization of Fixed--Point Point 
NumbersNumbers

• Truncation of a (β+1)-bit fixed-point 
number to (b+1) bits is achieved by simply 
discarding the least significant              bits 
as shown below

)( b−β

s 1−a 2−a ba−
∆
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Quantization of FixedQuantization of Fixed--Point Point 
NumbersNumbers

• Range of truncation error
(assuming β >> b):

• Positive number and two’s complement 
negative number

• Sign-magnitude negative number and ones’-
complement negative number

0≤<− tεδ

xxt −= )(Qε

δε <≤ t0
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Quantization of FixedQuantization of Fixed--Point Point 
NumbersNumbers

• Range of rounding error
(assuming β >> b):

• For all positive and negative numbers

22
δεδ ≤<− r

xxr −= )(Qε

Copyright © 2005 S. K. Mitra22

Quantization of FloatingQuantization of Floating--Point Point 
NumbersNumbers

• In floating-point format a decimal number x
is represented as                    where E is the 
exponent and M is the mantissa

• Mantissa M is a binary fraction restricted to 
lie in the range

• Exponent E is either a positive or a negative 
binary number

Mx E ⋅= 2

1
2
1 <≤ M
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Quantization of FloatingQuantization of Floating--Point Point 
NumbersNumbers

• The quantization of a floating-point number 
is carried out only on the mantissa

• Range of relative error:

• Two’s complement truncation

0,20
0,02

<<≤
>≤<−

x
x

t
t
δε

εδ

M
MM

x
xx −=−= )()( QQε

Copyright © 2005 S. K. Mitra24

Quantization of FloatingQuantization of Floating--Point Point 
NumbersNumbers

• Sign-magnitude and ones’s complement 
truncation

• Rounding of all numbers

• Note: We consider in this course fixed-
point implementation case

02 ≤<− tεδ

δεδ ≤<− r
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Analysis of Coefficient Analysis of Coefficient 
Quantization EffectsQuantization Effects

• The transfer function           of the digital 
filter implemented with quantized 
coefficients is different from the desired 
transfer function H(z)

• Main effect of coefficient quantization is to 
move the poles and zeros to different 
locations from the original desired locations

)(ˆ zH
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Analysis of Coefficient Analysis of Coefficient 
Quantization EffectsQuantization Effects

• The actual frequency response               is 
thus different from the desired frequency 
response

• In some cases, the poles may move outside 
the unit circle causing the implemented 
digital filter to become unstable even 
though the original transfer function H(z) is 
stable

)( ωjeH

)(ˆ ωjeH
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Analysis of Coefficient Analysis of Coefficient 
Quantization EffectsQuantization Effects

• Effect of coefficient quantization can be 
easily carried out using MATLAB

• To this end, the M-files a2dT (for 
truncation) and a2dR (for rounding) can be 
used
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Coefficient Quantization Effects Coefficient Quantization Effects 
On a Direct Form IIR FilterOn a Direct Form IIR Filter

• Gain responses of a 5-th order elliptic 
lowpass filter with unquantized and 
quantized coefficients
Fullband Gain Response                 Passband Details
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Coefficient Quantization Effects Coefficient Quantization Effects 
On a Direct Form IIR FilterOn a Direct Form IIR Filter

• Pole and zero locations of the filter with 
quantized coefficients (denoted by “x” and 
“o”) and those of the filter with unquantized
coefficients (denoted by “+” and “*”)
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Coefficient Quantization Effects Coefficient Quantization Effects 
On a Cascade Form IIR FilterOn a Cascade Form IIR Filter

• Gain responses of a 5-th order elliptic 
lowpass filter implemented in a cascade 
form with unquantized and quantized 
coefficients

Fullband Gain Response                 Passband Details
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Coefficient Quantization Effects Coefficient Quantization Effects 
On A Direct Form FIR FilterOn A Direct Form FIR Filter

• Gain responses of a 39-th order equiripple
lowpass FIR filter with unquantized and 
quantized coefficients
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Estimation of PoleEstimation of Pole--Zero Zero 
DisplacementsDisplacements

• Consider an N-th degree polynomial B(z)
with simple roots:

with
• Roots     of B(z) are given by
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Estimation of PoleEstimation of Pole--Zero Zero 
DisplacementsDisplacements

• Effect of coefficient quantization is to 
change the polynomial coefficient      to

• Thus, the polynomial B(z) after coefficient 
quantization becomes
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Estimation of PoleEstimation of Pole--Zero Zero 
DisplacementsDisplacements

• denotes the roots of          and are the 
new locations to which roots      of B(z)
have moved

• For small changes in the coefficient values,   
will be close to      and can be expressed 

as

kz
kẑ

kẑ kz

)(ˆ zB

)()(ˆ kkj
kkkkk errzzz θθ ∆+∆+=∆+=
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Estimation of PoleEstimation of Pole--Zero Zero 
DisplacementsDisplacements

• If         is assumed to be very small, we can 
express

neglecting higher order terms
• Then

ib∆
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Estimation of PoleEstimation of Pole--Zero Zero 
DisplacementsDisplacements

• Now we can express 1/B(z) by partial-
fraction expansion as

where        is the residue of 1/B(z) at the 
pole            , i.e.,

∑
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Estimation of PoleEstimation of Pole--Zero Zero 
DisplacementsDisplacements

• If       is very close to     , then we can write

or

• But
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Estimation of PoleEstimation of Pole--Zero Zero 
DisplacementsDisplacements

• Therefore

assuming that      is very close to
• Rewriting the above equation we get
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Estimation of PoleEstimation of Pole--Zero Zero 
DisplacementsDisplacements

• Equating real and imaginary parts of the 
above we arrive at

where

BSBQP ∆⋅=∆⋅+−=∆ kr
bkkkkk XRr )(
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Estimation of PoleEstimation of Pole--Zero Zero 
DisplacementsDisplacements

• The sensitivity vectors       and       depend 
only on B(z) and are independent of ∆B

• Once these vectors have been calculated, 
pole-zero displacements for any sets of ∆B
can be calculated using the equations given

• Elements of ∆B are multiplier coefficient 
changes only for the direct form realizations

kr
bS k

b
θS
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• Example - Consider the direct form II 
realization of
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Estimation of PoleEstimation of Pole--Zero Zero 
DisplacementsDisplacements

+

+

x[n] y[n]
1−z

1−z

K

L−
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• Here
where

• We compute

• Therefore

Estimation of PoleEstimation of Pole--Zero Zero 
DisplacementsDisplacements
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Estimation of PoleEstimation of Pole--Zero Zero 
DisplacementsDisplacements

• Substituting these values we get

• It can be seen that the 2nd-order direct form 
IIR structure is highly sensitive to 
coefficient quantizations for transfer 
functions with poles close to θ = 0 or π

LrXr ∆=∆=∆ 2
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Estimation of PoleEstimation of Pole--Zero Zero 
DisplacementsDisplacements

• Consider an arbitrary digital filter structure 
with R multipliers given by

• The multiplier coefficients       are 
multilinear functions of the coefficients     
of the polynomial B(z)

Rkk ,,2,1, K=α

kα
ib
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Estimation of PoleEstimation of Pole--Zero Zero 
DisplacementsDisplacements

• Thus, when      changes into                 due 
to coefficient quantization, the change          
in the polynomial coefficient      can be 
expressed as
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Estimation of PoleEstimation of Pole--Zero Zero 
DisplacementsDisplacements

• In matrix form we have
where

T
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Estimation of PoleEstimation of Pole--Zero Zero 
DisplacementsDisplacements

• Here the root displacements are given by

where the sensitivity vectors       and         
are as given earlier

• Note: The matrix C depends on the 
structure but has to be computed only once
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Estimation of PoleEstimation of Pole--Zero Zero 
DisplacementsDisplacements

• Example - Consider the coupled-form 
structure with a transfer function given by
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Estimation of PoleEstimation of Pole--Zero Zero 
DisplacementsDisplacements

• If                           and                           , 
then the transfer function becomes

• Comparing the denominator of the above 
with that of the transfer function of the 
direct form structure we get
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Estimation of PoleEstimation of Pole--Zero Zero 
DisplacementsDisplacements

• Taking the partials of both sides of the last 
two equations we get

• Finally, substituting the results of the 
previous example we arrive at
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Estimation of PoleEstimation of Pole--Zero Zero 
DisplacementsDisplacements

• or,

• As can be seen from the above, the coupled-
form structure is less sensitive to multiplier 
coefficient quantization than the direct form 
structure
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A/D Conversion Noise A/D Conversion Noise 
AnalysisAnalysis

• A/D converters used for digital processing 
of analog signals in general employ two’s-
complement fixed-point representation to 
represent the digital equivalent of the input 
analog signal

• For the processing of bipolar analog signals, 
the A/D converter generates a bipolar 
output represented as a fixed-point signed 
binary fraction
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Quantization Noise ModelQuantization Noise Model

• The digital sample generated by the A/D 
converter is the binary representation of the 
quantized version of that produced by an 
ideal sampler with infinite precision

• If the output word is of length (b+1) bits 
including the sign bit, the total number of 
discrete levels available for the 
representation of the digital equivalent is 12 +b
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Quantization Noise ModelQuantization Noise Model
• The dynamic range of the output register 

depends on the binary number 
representation selected for the A/D 
converter

• The model of a practical A/D conversion 
system is as shown below

Quantizer
Ideal

sampler Coder
][nx

)(nTxa=
)(txa ][ˆ nx

])[( nxQ=
Quantizer

][ˆ nxeq
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Quantization Noise ModelQuantization Noise Model

• The quantization process employed by the 
quantizer can be either rounding or 
truncation

• Assuming rounding is used, the input-
output characteristic of a 3-bit A/D 
converter with the output in two’s-
complement form is as shown next
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Quantization Noise ModelQuantization Noise Model
• Input-output characteristic
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Quantization Noise ModelQuantization Noise Model
• The binary equivalent            of the quantized 

input analog sample         for a two’s-
complement binary representation, is a binary 
fraction in the range

• It is related to the quantized sample           
through

where         denotes the full-scale range of the 
A/D converter

1][ˆ1 <≤− nxeq

][ˆ nxeq
][ˆ nx

][ˆ nx

FS
eq R

nxnx ][ˆ2][ˆ =

FSR
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Quantization Noise ModelQuantization Noise Model
• Assume the input signal has been scaled to 

be in the range of        by dividing its 
amplitude by             , as is usually the case

• The decimal equivalent of            is then 
equal to

• For a (b+1)-bit bipolar A/D converter, the 
total number of quantization levels is

• The full-scale range is
where δ is the quantization step size

12 +b

δ12 += b
FSR

][ˆ nx
][ˆ nxeq

1±
2/FSR
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Quantization Noise ModelQuantization Noise Model
• For the 3-bit bipolar A/D converter, total 

number of levels is
• The full-scale range is                with a 

maximum value of                       and a 
minimum value of

• If the input analog sample              is within 
the full-scale range

it is quantized to one of the 8 discrete levels 
shown earlier

823 =
δ8=FSR
2/7max δ=A
2/9min δ−=A

2
7

2
9 )( δδ ≤<− nTxa

)(nTxa
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Quantization Noise ModelQuantization Noise Model
• In general, for a (b+1)-bit bipolar A/D 

converter employing two’s-complement 
representation, the full-scale range is given 
by

• Denote the difference between the 
quantized value                         and the input 
sample x[n] as the quantization error:

2
1

2
1 )12()()12( δ+δ+ −≤<+− b

a
b nTx

][ˆ])[( nxnx =Q

][][ˆ][])[(][ nxnxnxnxne −=−=Q
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Quantization Noise ModelQuantization Noise Model
• It follows from the input-output 

characteristic of the 3-bit bipolar A/D 
converter given earlier that e[n] is in the 
range

assuming that a sample exactly halfway 
between two levels is rounded up to the 
nearest higher level and assuming that the 
analog input is within the A/D converter 
full-scale range

22
][ δδ ≤<− ne
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Quantization Noise ModelQuantization Noise Model
• In this case, the quantization error e[n], 

called the granular noise, is bounded in 
magnitude according to

• A plot of the e[n] of the 3-bit A/D converter 
as a function of the input sample x[n] is 
shown below

22
][ δδ ≤<− ne

Copyright © 2005 S. K. Mitra63

Quantization Noise ModelQuantization Noise Model
• When the input analog sample is outside the 

full-scale range of the A/D converter, the 
magnitude of error e[n] increases linearly 
with an increase in the magnitude of the 
input

• In such a situation, the error e[n] is called 
the saturation noise or the overload noise
as the A/D converter output is “clipped” to 
the maximum value             if the analog 
input is positive or to the minimum value         

if the analog input is negative1−

b−− 21
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Quantization Noise ModelQuantization Noise Model
• A clipping of the A/D converter output 

causes signal distortion with highly 
undesirable effects and must be avoided by 
scaling down the input analog signal          
to ensure that it remains within the A/D 
converter full-scale range

• We therefore assume that input analog 
samples are within the A/D converter full-
scale range and thus, there is no saturation 
error

)(nTxa
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Quantization Noise ModelQuantization Noise Model
• Now, the input-output characteristic of an 

A/D converter is nonlinear, and the analog 
input signal is not known a priori in most 
cases

• It is thus reasonable to assume for analysis 
purposes that the error e[n] is a random 
signal with a statistical model as shown 
below

+][nx ][ˆ nx

][ne
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Quantization Noise ModelQuantization Noise Model
• For simplified analysis, the following 

assumptions are made:
(1) The error sequence {e[n]} is a sample 
sequence of a wide-sense stationary (WSS) 
white noise process, with each sample e[n]
being uniformly distributed over the range 
of the quantization error
(2) The error sequence is uncorrelated with 
its corresponding input sequence {x[n]}
(3) The input sequence is a sample sequence 
of a stationary random process
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Quantization Noise ModelQuantization Noise Model
• These assumptions hold in most practical 

situations for input signals whose samples 
are large and change in amplitude very 
rapidly in time relative  to the quantization 
step in a somewhat random fashion

• These assumptions have also been verified 
experimentally and by computer 
simulations

Copyright © 2005 S. K. Mitra68

Quantization Noise ModelQuantization Noise Model
• The statistical model makes the analysis of 

A/D conversion noise more tractable and 
results derived have been found to be useful 
for most applications

• If ones’-complement or sign-magnitude 
truncation is employed, the quantization 
error is correlated to the input signal as the 
sign of each error sample e[n] is exactly 
opposite to the sign of the corresponding 
input sample x[n]
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Quantization Noise ModelQuantization Noise Model
• As a result, practical A/D converters use 

either rounding or two’s-complement 
truncation

• Quantization error probability density 
functions p(e) for rounding and two’s-
complement truncation are as shown below

e

p(e)
1/δ

δ/2− δ/20

p(e)

e

1/δ

δ− 0
Rounding Two’s-complement truncation
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Quantization Noise ModelQuantization Noise Model
• Mean and variance of the error sample e[n]:
• Rounding -

• Two’s-complement truncation -

0
2

)2/()2/( == − δδ
em

22
0 δδ −== −

em

( )
1212

)2/()2/(2 22
δδδσ =

−−=e

1212
)0(2 22 δδσ =

−=e
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SignalSignal--toto--Quantization Noise Quantization Noise 
RatioRatio

• The effect of the additive quantization noise 
e[n] on the input signal x[n] is given by the 
signal-to-quantization noise ratio given by

where        is the input signal variance 
representing the signal power and        is 
the noise variance representing the 
quantization noise power

dBSNR
e

x
DA ⎟

⎠

⎞
⎜
⎝

⎛
= 2

2

10/ log10
σ

σ

2
xσ 2

eσ
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SignalSignal--toto--Quantization Noise Quantization Noise 
RatioRatio

• For rounding, e[n] is uniformly distributed 
in the range

• For two’s-complement truncation, e[n] is 
uniformly distributed in the range

• For a bipolar (b+1)-bit A/D converter

• Hence

48
)(2 22

2 FS
b R

e
−

=σ

FS
b R)1(2 +−=δ

)2/,2/( δδ−

)0,( δ−
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SignalSignal--toto--Quantization Noise Quantization Noise 
RatioRatio

• Therefore

• This expression can be used to determine 
the minimum wordlength of an A/D 
converter needed to meet a specified

• Note:                increases by 6 dB for each 
bit added to the wordlength

⎟
⎠
⎞

⎜
⎝
⎛= − 22

2

)(2
48

10/ log10
FS

b
x

RDASNR σ

dBb
x

FSR ⎟
⎠
⎞⎜

⎝
⎛−+=
σ

log2081.1602.6

DASNR /

DASNR /

Copyright © 2005 S. K. Mitra74

SignalSignal--toto--Quantization Noise Quantization Noise 
RatioRatio

• For a given wordlength, the actual SNR 
depends on       , the rms value of the input 
signal amplitude and the full-scale range         
of the A/D converter

• Example - Determine the SNR in the digital 
equivalent of an analog sample x[n] with a 
zero-mean Gaussian distribution using a 
(b+1)-bit A/D converter having

xσ
FSR

xFS KR σ=
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SignalSignal--toto--Quantization Noise Quantization Noise 
RatioRatio

• Here

• Computed values of the SNR for various 
values of K are as given below:

⎟
⎠
⎞⎜

⎝
⎛−+=

x

FSR
DA bSNR

σ10/ log2081.1602.6

)(log2081.1602.6 10 Kb −+=

05.8901.7797.6493.5289.408
56.9151.7947.6743.5539.436
08.9504.8399.7095.5891.464
15131197

=
=
=

=====

K
K
K

bbbbb
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SignalSignal--toto--Quantization Noise Quantization Noise 
RatioRatio

• The probability of a particular input analog 
sample with a zero-mean Gaussian 
distribution staying within the full-scale 
range          is given byxKσ2

∫ −=−Φ
K

y dyek
0

2/221)(2 π
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SignalSignal--toto--Quantization Noise Quantization Noise 
RatioRatio

• Thus, for K = 4, the probability of an analog 
sample staying within the full-scale range      
is 0.9544

On average about 456 samples out 
of 10,000 samples will fall outside the full-
scale range and be clipped

xσ8
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SignalSignal--toto--Quantization Noise Quantization Noise 
RatioRatio

• For K = 6, the probability of an analog 
sample staying within the full-scale range        

is 0.9974
On average about 26 samples out of 

10,000 samples will fall outside the full-
scale range and be clipped

• In most applications, a full-scale range of      
is more than adequate to ensure no 

clipping in conversion

xσ12

xσ16
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Effect of Input Scaling on SNREffect of Input Scaling on SNR

• Consider the scaled input Ax[n]
• The variance of the scaled input is
• Then

• For a given b, the SNR can be increased by 
scaling up the input signal by making A > 1

22
xA σ

)(log2081.1602.6 10/ KbSNR DA −+=
)(log20 10 A+
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Effect of Input Scaling on SNREffect of Input Scaling on SNR

• But increasing A also increases the 
probability that some of the input analog 
samples being outside the full-scale range            

and as result, the expression for           
no longer holds

• Moreover, the output is clipped, causing 
severe distortion in the digital 
representation of the input analog signal

FSR DASNR /
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Effect of Input Scaling on SNREffect of Input Scaling on SNR

• A scaling down of the input analog signal 
by choosing A < 1 decreases the SNR

• It is therefore necessary to ensure that the 
input analog sample range matches as close 
as possible to the full-scale range of the 
A/D converter to get the maximum possible 
SNR without any signal distortion
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Propagation of Input Quantization Propagation of Input Quantization 
Noise to Digital Filter OutputNoise to Digital Filter Output

• To determine the propagation of input 
quantization noise to the digital filter 
output, we assume that the digital filter is 
implemented using infinite precision

• In practice, the quantization of arithmetic 
operations generates errors inside the digital 
filter structure, which also propagate to the 
output and appear as noise

Copyright © 2005 S. K. Mitra83

Propagation of Input Quantization Propagation of Input Quantization 
Noise to Digital Filter OutputNoise to Digital Filter Output

• The internal noise sources are assumed to 
be independent of the input quantization 
noise and their effects can be analyzed 
separately and added to that due to the input 
noise

• Model for the analysis of input quantization 
noise:

+ )(zH][nx
][ˆ nx

][ne

][ˆ ny
][][ nvny +=

Copyright © 2005 S. K. Mitra84

Propagation of Input Quantization Propagation of Input Quantization 
Noise to Digital Filter OutputNoise to Digital Filter Output

• Because of the linearity property of the 
digital filter and the assumption that x[n]
and e[n] are uncorrelated, the output        of 
the LTI system can thus expressed as

where y[n] is the output generated by the 
unquantized input x[n] and v[n] is the output 
generated by the error sequence e[n]

][][][ˆ nvnyny +=

][ˆ ny



15

Copyright © 2005 S. K. Mitra85

Propagation of Input Quantization Propagation of Input Quantization 
Noise to Digital Filter OutputNoise to Digital Filter Output

• Therefore

• The mean      of the output noise v[n] is 
given by

and its variance        is given by

)( 0j
ev eHmm =

vm

ωσ
π

π

ω
π

σ deH j
v

e ∫=
−

2

2
2 )(

2

2
vσ

∑
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−==
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Propagation of Input Quantization Propagation of Input Quantization 
Noise to Digital Filter OutputNoise to Digital Filter Output

• The output noise power spectrum is given 
by

• The normalized output noise variance is 
given by

22 )()( ωσω j
evv eHP =

∫==
−

π

π

ω
πσ

σ ωσ deH j
nv

e

v
2

2
12

, )(2
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Propagation of Input Quantization Propagation of Input Quantization 
Noise to Digital Filter OutputNoise to Digital Filter Output

• Alternately,

where C is a counterclockwise contour in 
the ROC of 

• An equivalent expression for the normalized 
output noise variance is

∫= −−

C

11
2
12

, )()( dzzzHzH
jnv π

σ

)()( 1−zHzH

∑=
∞

−∞=n
nv nh 22

, ][σ
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Algebraic Computation of Algebraic Computation of 
Output Noise VarianceOutput Noise Variance

• In general, H(z) is a causal stable real 
rational function with all poles inside the 
unit circle in the z-plane

• It can be expressed in a partial-fraction 
expansion form

where           is a low-order causal stable 
real rational transfer function

∑=
=

R

i
i zHzH

1
)()(

)(zHi
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Algebraic Computation of Algebraic Computation of 
Output Noise VarianceOutput Noise Variance

• Substituting the partial-fraction expansion 
of H(z) in

we arrive at

∫= −−

C

11
2
12

, )()( dzzzHzH
jnv π

σ

∑
=

∑
=
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Algebraic Computation of Algebraic Computation of 
Output Noise VarianceOutput Noise Variance

• Since             and             are stable transfer 
functions, it can be shown that

• Thus, we can write

∫=∫ −−−−

C

11

C

11 )()()()( dzzzHzHdzzzHzH kk ll

)(zHl)(zHk
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=
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Algebraic Computation of Algebraic Computation of 
Output Noise VarianceOutput Noise Variance

• In most practical cases, H(z) has only 
simple poles with             being either a 1st-
order or a 2nd-order transfer function

• Typical terms in the partial-fraction 
expansion of H(z) are:

• Let a typical contour integral be denoted as

)(zHk
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Table of Typical Contour Table of Typical Contour 
IntegralsIntegrals
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Table of Typical Contour Table of Typical Contour 
IntegralsIntegrals

• where
2

1 AI =
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Algebraic Computation of Algebraic Computation of 
Output Noise VarianceOutput Noise Variance

• Example - Consider a first-order digital 
filter with a transfer function

• A partial-fraction expansion of H(z) is

• The two terms in the above expansion are

αα −=
−

= − z
z

z
zH 11

1)(

α
α
−+= zzH 1)(

α
α
−== zzHzH )(,1)( 21
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Algebraic Computation of Algebraic Computation of 
Output Noise VarianceOutput Noise Variance

• Therefore, the normalized output noise 
variance is given by

• If the pole is close to the unit circle, we can 
write               , where

• In which case

22

2
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Algebraic Computation of Algebraic Computation of 
Output Noise VarianceOutput Noise Variance

• Thus, as the pole gets closer to the unit 
circle, the output noise increases rapidly to 
very high values approaching infinity

• For high-Q realizations, the wordlengths of 
the registers storing the signal variables 
should be of longer length to keep the 
round-off noise below a prescribed level
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Computation of Output Noise Computation of Output Noise 
Variance Using MATLABVariance Using MATLAB

• In the MATLAB implementation of the 
algebraic method outlined earlier, the 
partial-fraction expansion can be carried out 
using the M-file residue

• This results in terms of the form A and        
where the residues      and the 

poles      are either real or complex numbers
• For variance calculation, only the terms    

and      are then employed

)/( kk azB − kB
ka

1I
2I
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Computation of Output Noise Computation of Output Noise 
Variance Using MATLABVariance Using MATLAB

• An alternative fairly simple method of 
computation is based on the output noise 
variance formula

• For a causal stable digital filter, the impulse 
response decays rapidly to zero values

• Hence we can write
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Computation of Output Noise Computation of Output Noise 
Variance Using MATLABVariance Using MATLAB

• To determine an approximate value of       
the sum       is computed for L = 1, 2, . . ,
and the computation is stopped when 

where κ is a specified small number, which 
is typically chosen as 

κ<− −1LL SS
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