
ESL – A Methodology for

Handling Complexity

Brian Bailey

Grant Martin

Andrew Piziali

Monday, 29 January 2007

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
2

TecForum Outline

• Introduction – 30 min

• The ESL Flow – 10 min

• Specification and Analysis – 20 min

• Pre-Partitioning Analysis, and Partitioning – 25 min

• Break – 10 min

• Post-Partitioning Analysis – 15 min

• Verification – 30 min

• HW and SW Implementation – 25 min

• Summary, Futures and Conclusions – 15 min

Introduction

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
4

The Authors

Brian Bailey Grant Martin Andrew Piziali

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
5

The Book

Due out March 2007

From Elsevier-Morgan Kaufmann

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
6

Why did we write it?

• “There is a tide in the affairs of men, Which taken at the
flood, leads on to fortune. Omitted, all the voyage of their
life is bound in shallows and in miseries. On such a full
sea are we now afloat. And we must take the current
when it serves, or lose our ventures.”
– William Shakespeare

• The time is ripe
– We can see real ESL taking shape

– We can see real usage of some of the current ESL tools
occurring

– Research concepts are now more ready to become practical
steps in the design and verification flow

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
7

What makes ESL different?

Tools

IP

HW SW

• ESL crosses all the
boundaries

• IP models drive ESL
as much as tools

• ESL that doesn’t
include SW is not ESL!

ESL

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
8

What makes ESL different?

• Abstraction is possible
– Model speed-accuracy tradeoffs

• Essential

• Worthwhile

• Possible

• Open Source
– SystemC as an example (specific community source
model)

– Existence drove modeling and experiments

– Standardization ensures value of tool and model
investments

– OSCI Reference has kept a lid on prices and
revenues

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
9

A brief look at history

• Those who do not remember the

past are condemned to repeat it.

–George Santayana

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
10

Motivations

• Consider a device:

• 3G cell phone/data terminal:
– integrated Global Positioning System (GPS) device

– digital camera

– video/MP3

• Acts as:
– entertainment center

– web terminal

– personal information management device

• With Wi-Fi or Bluetooth connectivity

• How to design, implement and verify?

• “…the increasing failure of traditional methodologies to
cope with the burgeoning system algorithm content
necessitated by the integration of so much functionality.”

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
11

Historical Categories of ESL

• Behavioral Modeling

– Leading to “Virtual System Prototypes” (VSP)

• (after Graham Hellestrand, EST – Embedded

Systems Technology)

• Automated Implementation of Fixed-

Function Hardware

• Automated Implementation of

Programmable Hardware

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
12

Historical Examples:

Behavioral Modeling

Function-architecture

Co-design:

The Late, Lamented

‘Felix’ (VCC) (1997+)

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
13

Historical Examples:

Automated Implementation of Fixed-

Function Hardware

Synopsys Behavioral

Compiler

Book by David Knapp,

Father of Behavioral

Compiler

Prentice-Hall PTR

June 1996!

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
14

What can we learn from

history?

• Standardized capture mechanisms (e.g. languages) are
vital to promote model existence
– SystemC

• Model interoperability is key

• IP-driven design at ESL level is driven by model
availability

• Speed / accuracy tradeoffs are important

• The natural form for algorithm implementation is “C” (or
variants)

• New implementation technologies fit design niches
– Hyping them as universal solutions is counter-productive

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
15

Examples: academic and open

source

• Polis

• Ptolemy

• SpecC

• OSCI SystemC

• SPARK

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
16

Current examples: industrial

• Behavioral modeling/VSP

– CoWare Platform Architect

– ARM Realview ESL

– Synopsys System Studio/Virtio

– VaST

– Virtutech ….

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
17

Current examples: industrial

• Automatic implementation of fixed-function HW:
– Algorithm modeling: Matlab/Simulink, SPW, …

– High-level synthesis: Forte, Mentor Catapult,
Bluespec, …

• Automatic implementation of programmable HW:
– Tensilica Xtensa/XPRES

– Critical Blue

– Synfora

– Target Compiler Technologies

– CoWare

– ARC

– ARM OptimoDE

– Improv Systems

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
18

Example of possible value:

VSP

• System architectural design, analysis, optimization, and
verification
– Estimate system performance before implementation

– Analytical HW/SW and SW/SW partitioning over multiple processors

• Start application software development well in advance of
hardware

• Early identification of system non-determinism

• Execute HW and HW/SW co-verification orders of
magnitude faster than RTL/C

• Significantly reduce overall development time, effort and
risk
– “green field” or “blank sheet” designs

– platform-based derivative designs

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
19

Entering the mainstream

• Who bears the Risk?

– System Architects

– RTL Teams

– SW Teams

– ASIP design

• Impact of ESL on Commercial EDA

– The “Big 3”

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
20

Taxonomy

• Enables the definition of models

and terms in a more precise manner

• Based on a long line of work (RASSP,
VSIA)
– B. Bailey, G. Martin, and T. Anderson, eds, Taxonomies for the
Development and Verification of Digital Systems, Springer
Science+Business Media, New York, 2005.

• Maintains most of the notion of abstraction
from VSIA work
– Temporal, Data abstraction

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
21

Taxonomy – for ESL

• Adds three new axes to define attributes of

the system:

– Computation

– Communications

– Configurability

• All attributes and abstractions are

orthogonal

– With some linking through practicalities

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
22

Taxonomy Axes

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
23

Communications vs

Computation

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
24

Taxonomy Examples

An HDL

Generic C

SystemC

The ESL Flow

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
26

The Flow

Software

Implementation

Hardware

Implementation

Specification and Modeling

Post-Partitioning Verification

Post-Partitioning Analysis

Pre-Partitioning Analysis

Partitioning

Implementation Verification

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
27

Specification and Modeling

• Use natural language specifications and

executable specifications

• Manage complexity

• Track requirements with a tool

• Choose a specification language

• Consider model-based development

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
28

Pre-Partitioning Analysis

• Explore spectrum of algorithmic tradeoffs

• Time, space, power, complexity, TTM

• Dynamic analysis using executable specs

• Static analysis

– Reliability, maintainability, usability and

criticality

• Consider platform-based design

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
29

Partitioning

• Functional decomposition

• Architecture description (structural

decomposition)

• Mapping (functional to architecture)

• Hardware partition

• Software partition

• Reconfigurable computing

• Communication implementation

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
30

Post-Partitioning Verification

• Has the intended behavior been
preserved?

• Verification planning

1. Quantify scope of the verification problem

2. Specify solution to the verification problem

• Implement verification environment

• Bring-up and regressions

• Analyze failures and coverage

• Employ abstract coverage

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
31

Post-Partitioning Analysis

• Refine architectural models to reflect

partitioning choices

• Choose appropriate HW and SW models

• Explore the design space

• Employ dynamic and static analysis

– Functional, performance, interface, power,

area, cost and debug capability analyses

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
32

Hardware Implementation

• Create HW model to be synthesized

• Choose a hardware implementation
– extensible processors, DSP coprocessors,
customized VLIW coprocessors, ...

• ESL synthesis piggybacks on RTL flow:

8. Verify RTL

9. Synthesize RTL to gates

10.Verify timing

11.Place and route gates

12.Design rule check

13.Generate GDSII

1. System specification

2. HW/SW partitioning

3. Virtual prototype

4. Transaction-level design

5. Transaction level

6. Verification

7. ESL synthesis to RTL

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
33

Software Implementation

• Use ESL models to prototype software

components

• Estimate algorithm performance

• Choose ESL specification language

• Consider debugging environment

• Use ESL model for runtime development

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
34

Implementation Verification

• Clear box vs. opaque box verification

• Compare implementation against post-

partitioned models

• Employ positive and negative verification

• Use formal analysis (PSL, SVA)

• Use verification IP

• Measure and analyze coverage (again!)

• Accelerate execution when necessary

Specification and Modeling

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
36

Specification

• A specification defines the functional and
non-functional aspects of a system that is
devoid of implementation decisions

– For ESL it is important that decisions about
HW, SW, Architecture etc., are not embedded
in the specification

• Architectural decisions are made to refine
a specification towards implementation

– Architectural, micro-architecture, fabrication
technologies…

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
37

Natural language or

executable?

• Natural languages are more expressive

– Easier for humans to navigate

– But subject to ambiguity

– And more difficult for computers to navigate

• Requirements are easier to automate

– And easier to be implementation independent

– Most likely to lead into verification flow

• Verification Planning

• Coverage, Properties

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
38

Multiple Aspects

• Need to specify multiple aspects

– Functionality
• Includes HW, SW, mechanical…

– Architecture
• Solution structure

• Constraints
– Power, performance, cost…

– Mapping
• Used to be called HW/SW co-design

• Today the scope is broader

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
39

Modeling

• A model is a description or analogy used to help
understand something that cannot be directly
observed
– a model employs abstraction that can hide
unnecessary details and thus highlight the important
aspects of the model, making them more
comprehensible

– In general we can only deal with a finite set of issues
at a time, so we use abstraction to reduce the number
visible

• Implies that you need different models to
analyze different aspects of a system

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
40

Requirements

• Requirements emerge from the problem domain

• Requirements management is a process that:

– Takes care of making all requirements visible and

traceable

• A requirement management system depends on

the size and complexity of the organisation

– Placing trust only in paper documents will not suffice

– Some degree of automation is required

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
41

Requirements Management

DetailDetailDetailDetailDetailDetailDetailDetail

FeatureFeatureFeatureFeatureFeatureFeatureFeatureFeatureRequirementRequirementRequirementRequirementRequirementRequirementRequirementRequirement

1...N

0...N

0...N

1...N

0...N

SubSubSubSub----featurefeaturefeaturefeatureSubSubSubSub----featurefeaturefeaturefeature

Change orderChange orderChange orderChange orderChange orderChange orderChange orderChange order

Customer’s understanding of
the need

Features and Subfeatures represent the
product/component management and
implementation view of the supplier

Releasing provides
planning view to
implementation

ReleaseReleaseReleaseReleaseReleaseReleaseReleaseRelease

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
42

New

Studied

Planned

Accepted

In Progress

Closed

Postponed

Rejected

Study

Proposed

Planned

Released

Integrated

Identified Identified

Studied

Proposed

Planned

Ready to be
Released

Released

Integrated

Cancelled

Released

Planned

RequiremementRequiremementRequiremementRequiremement FeatureFeatureFeatureFeature SubSubSubSub----featurefeaturefeaturefeature ReleaseReleaseReleaseRelease

Requirements Documents

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
43

Solutions

• Commercial tools
– DOORS,

– Caliber-RM,

– PACE,

– RMTrack,

– Team-Trace

• References
– Woodruff, Wayne, “Requirements Management for Small

Organizations”, A Field Guide to Effective Requirements
Management Under SEI’s Capability Maturity Model, Rational
Software Corporation, 1997

– Sud, Rajat R. and Arthur, James, “Requirements Management
Tools: A Qualitative Assessment”, Department of Computer
Science, Virginia Tech, Blacksburg, VA 24060 USA, 2003

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
44

Specification Languages

• Multiple Domains
– Dataflow / Control flow

– Protocol Stacks

– Embedded Systems

• Multiple Viewpoints
– Algorithmic

– Functional

– Behavioral
• Transaction level No one language today can

properly address them all

Functional ModelBehavioral Model

Note that neither defines abstraction

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
45

Specification Languages

• Leading Candidates

– MATLAB

– Rosetta

– SystemC

– SDL

– UML

– Bluespec

• Ideal solution would to add aspect-oriented

constructs to a specification language

– An EDA example is the e language

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
46

The Prescription

• Specification should be captured as

formally as possible

– Executable if it adds value and can be

independent of implementation

– Requirements should be formalized and

tracked

– Use natural language docs to fill in the blanks

• Concentrate on new functionality

• Specification should be refined over time

Pre-Partitioning Analysis, and

Partitioning

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
48

Pre-Partitioning Analysis

• Static analysis of specifications

• Impact of platform-based design

• Dynamic analysis

• Algorithmic analysis

• Analysis scenarios

• Downstream use of results

• Case study

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
49

Static Analysis

• Software project estimation
– AJ Albrecht, function point analysis (1979)

– Tom DeMarco, function ! Metrics (1982)

– International Function Point User Group (1986 to today)

• Analysis of HW and Systems
– William Fornaciari and colleagues, CEFRIEL (Milano)

– Designs in VHDL, Occam2, C, UML

– Predicting:

• Power estimation

• Software execution time

• Development cost, size, including reuse; product cost

– Performance usually a constraint

– Very difficult to separate pre- from post-partitioning

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
50

Static Analysis

• “ility” analysis

– Reliability, maintainability, usability,
criticality…

– Mil/aerospace (MIL-STD-217)

– Hierarchical combination of predictors for
subsystems

– Depends on accurate subsystem and
component models

– Difficult to gather usable historical data in
many embedded systems and teams

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
51

Requirements Analysis

• To support traceability

• To help define verification and validation

tests

• Can be used to help define

“implementation weight” of a specification

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
52

Impact of platform-based

design

• If creating a derivative of a defined
platform

– Apply analysis methods to new or revised
portions of platform

– Try to avoid being biased by partitioning
decisions already embedded in the platform
• New functions tending to software do not have to
just run on existing processors

• Analyze before partitioning – establish
requirements/needs before deciding on HW vs.
SW

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
53

Dynamic Analysis

• Based on executable models

• Based on simulation

• Can estimate
– Computational “burden”

– Communications “burden”

– Power/energy “burden”

• Avoid bias
– Models are usually partitioned – need NOT imply final
partitioning

– Executable models contain implementation “artifacts”
• Carefully separate out characteristics that are ESL level from
those that are artifacts

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
54

Algorithmic Analysis

• One of the oldest and most widely used areas of

practical ESL

• Several long-standing commercial tools

– SPW: Comdisco, Cadence (Alta), CoWare

– The Mathworks Matlab/Simulink

– Synopsys SystemStudio (many incarnations; best

known was COSSAP)

– State Machine tools from Mathworks (StateFlow),

UML providers (IBM/Rational, Telelogic iLogix

Rhapsody, Artisan SW tools, Esterel Technologies, …

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
55

Research Tools

• Ptolemy – UC Berkeley

• POLIS/Metropolis – UC Berkeley

• SpecC – UC Irvine

• ….

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
56

Ptolemy Example

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
57

Analysis Scenarios

• Signal processing algorithms
– Wireless and wired communications

– Bit error rate (BER), Frame error rate (FER)

– In the context of defined, parameterised channel models

– Algorithms defined and inherent BER, FER determined when simulated with
channel model for a particular communications protocol

– Gradual refinement into partitioned, post-partitioned implementation possible
• Floating point to fixed point mapping

• DSP or custom HW targets

• Eg. Iridium SPW example from mid-1990s

– Filter design

– Software-designed radio

• Most successful uses of these toolsets tends to focus on communications
– Dataflow paradigm

– Possible to take into implementations through a flow

– Demonstrated success

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
58

Downstream use of results

• Classic uses illustrated by SPW, Cossap, Mathworks
Simulink/Matlab:
– Floating-point, fixed-point models, results used as golden

verification environments for HW/SW implementations

– Algorithmic specifications drive software code generation for
target processors and DSPs

– Algorithmic specifications that can drive hardware code
generation for RTL level synthesis

– Co-simulation between system-level simulation, RTL simulation,
and software execution of code on instruction set simulators

• Emerging: input into Behavioural/High-level/ESL
synthesis

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
59

Case study: JPEG encoding

• Basic algorithm partitioned into sub-
sections

• Mapped to configurable processors (5)

• Used to estimate computational and
communications burden of algorithm as
expressed in code

• Important not to be biased by particular
case study partitioning in drawing
conclusions

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
60

JPEG encoding

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
61

Computational Burden

67.4 M98.6 M122.5 M1024 x 1024

85.5 M256 x 256

21.4 M128 x 128

315 K342 K386 K2.03 M64 x 64

636 K32 x 32

JPEG (Huffman)

encoding
DCT

Color

Conversion

Sum of

system

cycles

Picture Size

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
62

Case Study Design Space

Exploration

• To process one 1024 x 1024 size picture
in 1 second, assuming instructions per
cycle ~ 1, run single processor at 300 MHz

• To do it in ½ second – HW or
multiprocessor

• 2 processor solution – first at 250 MHz,
second at 350 MHz (DCT+Huffman on 2nd)

• 3 processor solution – 400, 300, 200 MHz
– does it in ~ 1/3 second

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
63

The Prescription

• Use specifications for analysis wherever
possible

• Avoid “paralysis by analysis”

• Avoid “death by simulation”

• Simulate executable specs but separate
out implementation artifacts

• Rich set of algorithmic analysis tools
available

• Keep an eye on new methods and tools

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
64

Partitioning

• “the process of subdividing an initial specification for a system,
which is generally defined by a monolithic natural language
document, executable specification, or legacy design, or a
combination of all three, into a set of potentially concurrent
cooperating processes, each of which may be described by
documents, executable models, or legacy designs, or a combination
of these forms, and of assigning them to a set of more or less
abstract resources, representing processors for software, silicon
area or IP blocks for hardware, communication channels, and
storage resources (e.g., buses, memories)”
– Take a specification

– Chop it into pieces

– Don’t worry if the pieces need to operate concurrently

– Assign the pieces to architectural resources
• Processors

• HW blocks

• Communication channels

• Storage

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
65

Partitioning

• Functional Decomposition

• Defining Target Architecture

• Mapping Function to Architecture

• Implementation

– SW

– HW

– Reconfigurable

• Specify, implement and optimize the
interfaces

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
66

Functional Decomposition

• Use a (set of) functional concurrent

executable specification language(s)

• Start from a sequential language and

automatically extract concurrency

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
67

Many functional specification

languages

• As discussed earlier:

– Commercial tools and research languages

– Simulink, MATLAB, Lustre, Esterel, UML,
SDL, SPW, Ptolemy, SystemC…

• Divide the specification(s) into islands of
“models of computation”

– FSMs, discrete event, dataflow

• Link them together with specification
models for each island

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
68

Extract Concurrency

• Start with a single specification language,
usually sequential:

– E.g. C/C++/SystemC

• Research and commercial approaches to
mapping this into partitioned systems

– E.g. Synfora PicoExpress

– Tensilica XPRES

– Research using compiler technology at
several universities
• Convert loop nests into potentially concurrent HW

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
69

Defining Target Architecture

Stylized architecture

NXP Semiconductors Nexperia Platform

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
70

Platform based partitioning

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
71

Mapping Function to

Architecture

Walking through

The design space

……..after Gajski

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
72

Metropolis

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
73

Implementation: HW

• Using a platform-based approach:

– Becomes a configuration process for the

platform, with

• A minimal amount of new HW block creation

• Avoid new HW at all costs

• For flexibility and risk reduction, map new function

to SW on processors if at all possible

• Configurable processors are an interesting way to

have SW often with HW performance

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
74

Implementation: SW

• “SW-SW Co-design”: Partitioning over multiple
processors
– Heterogeneous

• Classic: RISC + DSP

– Homogeneous
• Classic: Symmetric MultiProcessors (SMP)

• Partitioning into multiple tasks
– Task scheduling and dependencies

– Inter-task communications
• APIs: Message passing, shared memory

– Real-time dynamic vs. static or quasi-static
scheduling

– Worst case execution time (WCET) estimation

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
75

Operating systems and

memory

• Provide resources for SW task

management

• Commercial RTOSs

• Application layering and APIs

• Hardware dependent SW

• Custom (synthesized) OSs

• Memory partitioning and optimization

– Atomium (IMEC – Catthoor et al)

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
76

Implementation:

Reconfigurable

• New implementation option when added to classical HW
and SW options

• Many possibilities exist between pure ASIC/ASSP, pure
SW, pure FPGA
– ASIC with FPGA region

– FPGA with fixed cores (eg. Xilinx Virtex series)

– Custom design with reconfigurable region

– Configurable processor with instruction extensions mapped to
reconfigurable logic (cf. Stretch)

• Various programming models and tools exist
– Eg. Academic research (GARP), Simulink based (BEE)

– Industrial: Stretch, Xilinx, Atmel, Altera

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
77

Interfaces

• Communication template instantiation

– Early example is CoWare (Leuven research,

mid-1990s; was commercial “N2C”)

– Many other examples exist

• Interface synthesis

– Automatic generation of adaptors between

incompatible communications layers

– E.g. FSM based adaptors

– Research (Passerone et. Al.)

Post-Partitioning Analysis

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
79

Post-Partitioning Analysis

• We now have hardware and software

• Function and architecture have merged

• Need to verifying partitioning choices

• Need to establish the models and

framework necessary for verification

• Interfaces become very important

– Between functions

– Between groups

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
80

Interfaces

• Interfaces must be owned

• As partitioning continues new interfaces

are created

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
81

Maintaining the models

S1

P1

P2S2

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
82

Hardware / Software

• Three modeling options

– Model HW and SW in a single model
• Virtual System Prototype

• Usually used for SW verification

– Filter / Translate HW/SW communications
• Separates modeling concerns

• Must be careful about implicit effects of interfaces

– Model SW running on the HW
• Traditional HW/SW co-verification

• Possible performance issues
Migration

Path

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
83

Interface Models

• Interface models are key to system model
migration

– Wire / Event level

– Method / Transaction level

– Need smooth migration between them

• Must be able to:
– Evaluate system models with abstract interfaces

– Evaluate interface implementation with system models

– Evaluate implementation models with abstract
interfaces

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
84

Model and Interface

Refinement

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
85

Interface ‘languages’

• OSCI – TLM

– Defined interface views. Good start but not
sufficient

• GreenSoCs – GreenBus

– Separates interface protocol from transport

– Concepts to be moved into OSCI

• Spiratech (Mentor) CY language

– Declarative interface specification language

– Supports abstraction migration

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
86

Analysis Possibilities

• Functional

• Performance

• Interface

• Power

• Area

• Cost

• Debuggability

Verification

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
88

When Does Verification Begin?

• Verification starts as soon as a project is

conceived

– In early stages it is ad-hoc

– Based on experimentation

• After partitioning verification becomes

more formalized

– Structure becomes more stable

• Major decisions fixed

• Enables verification plan creation

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
89

Facets of Verification

Implementation
Verification

Complete System
Verification

System Design

Partitioning

Software Design Hardware Design

Software Develop Hardware Impl.

Integration

Physical Design

Behavioral
Verification

Performance
Verification

Functional
Verification

IP IP C, C++
SystemC

SystemVerilog

VHDL, Verilog

UML,
Matlab

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
90

Verification Fundamentals

• Verification is the comparison of two
independently obtained models
– Formal verification is exhaustive and analytical

• Need a partial model of the environment (constraints)

– Simulation is a sampling approach
• Random generation also requires a model of the environment
(interaction model)

• A set of directed tests is also a model

• An abstract model synthesized into an
implementation cannot serve as a reference
model
– This would only verify the synthesis tool, not the
function

– This is equivalence checking

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
91

Positive and Negative

Verification

• Negative Verification
– Show the non-existence of bugs

• Predominates today

• Shows a block will function under all conditions

• With simulation we cannot achieve 100% negative verification

– Property checking not ready yet

• There are many horror stories about bugs found late in the cycle

• Tends to imply all bugs created equal

• Positive Verification
– Show that the design actually does something useful

• Prioritizes important functionality over others

• More predictable schedules

• BUT – changes may have catastrophic consequences

• Need to balance positive and negative verification

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
92

Verification Plan

• A verification plan is used to:

– Formulate a strategy

– Develop tactics

• The verification plan must answer two

questions:

1. What is the scope of the verification

problem?

2. What is the solution to the verification

problem?

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
93

Verification Plan Outline

1. Introduction .. what does this document contain?

2. Functional Requirements opaque box design behaviors
– 2.1 Functional Interfaces external interface behaviors

– 2.2 Core Features external design-indep behaviors

3. Design Requirements clear box design behaviors
– 3.1 Design Interfaces internal interface behaviors

– 3.2 Design Cores internal block requirements

4. Verification Views time-based or functional features

5. Verification Environment Design functional spec of the verification env
– 5.1 Coverage coverage aspect functional spec

– 5.2 Checkers .. checking aspect functional spec

– 5.3 Stimuli .. stimulus aspect functional spec

– 5.4 Monitors ... data monitors functional spec

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
94

Specification Analysis

• Identify the feature set of the design and
its corner cases

– A corner case is one or more data values or
sequential events that, in combination, lead to
a substantial change in design behavior

• Can be done two ways

– Bottom up
• Suitable for small specifications

– Top down
• Preferred for most design specifications

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
95

Top-Down Analysis

Contributors

WW27 WW47WW43WW39WW35WW31WW27 WW47WW43WW39WW35WW31

LAN Ingress

LAN Egress

LAN Ingress

LAN Egress

JPEG

MPEG Encoder

Verification Plan

Software
Engineer

Project
Verification
Manager

Verification
Engineer

Systems
Engineer

Hardware
Designer

How do I
capture
system

behaviors

What bugs
are in the

logic I build?

Does HW
support all

SW
functions?

Are system
performance
and features
as expected?

Will we get it
all done in
time?

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
96

A Coverage Model is the Result

• A coverage model is an abstract

representation of device behavior

composed of attributes and their

relationships. The relationships may be

either data or temporal in nature.

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
97

Coverage Model Structures

• Matrix

0 S M L M

m e a a

a d r x

l I g

l u e

m

Length

Odd

Parity
Even

3

2

1 Address
0

• Hierarchical

• Hybrid with hierarchical parent

• Hybrid with matrix parent

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
98

Coverage Model Detailed

Design

• For each attribute, answer the questions:

– What must be sampled for each attribute value?

– Where in the verification environment or DUV should

the value be sampled?

– When should the data be sampled and correlated?

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
99

Verification Environment

Components

• Coverage Models

• Dynamic Verification
– Stimulus generator

– Response checking

• Static Verification
– Limited to implementation verification

– Constraints

• Execution Management

• Result Analysis
– Failure analysis

– Coverage analysis

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
100

Post Silicon Debug

• The likelihood that your design will work
first time ?

– Small today

– Getting smaller

• Must plan for silicon debug

– Raise visibility within the chip

– Add controllability

– Potentially add modifiability

• Lots of progress in this area

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
101

The Prescription

• Capture all design intent in specifications

– Executable and natural language

• Perform rigorous verification planning

– Quantify the scope of the problem

– Specify the solution to the problem

• Modulate coverage model fidelity

• Use the plan to drive the verification

process

HW and SW Implementation

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
103

Hardware Implementation

• A range of implementation architectures are
possible:
– General-purpose fixed ISA CPU

– Configurable and extensible processor tailored for the
application

– DSP (which may be based on an extensible
processor)

– VLIW processor (which may be based on an
extensible processor)

– FPGA (which may incorporate one or more
processors)

– ASIC/ASSP hardware blocks

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
104

Comparison

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
105

Processor Alternatives

• Configurable and Extensible

• DSP

• VLIW

• Application Specific Coprocessors

– Note: The first category may subsume all the

rest, depending on the technology offered

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
106

External Bus

Interface

Base ISA Feature

Configurable Functions

Optional Function

Designer Defined Features (TIE)

Optional & Configurable

User Defined

Queues / Ports

up to 1M Pins

Xtensa

Local Memory

Interface

Trace/TJAG/OCD

U
s
e
r D
e
fin
e
d
 E
x
e
c
u
tio
n
 U
n
its
,

R
e
g
is
te
r F
ile
s
 a
n
d
 In
te
rfa
c
e
s

Base ALU

Optional

Execution

Units

Instruction Fetch / Decode

Data

Load/Store

Unit

Register File

User Defined

Execution Unit

Vectra LX

DSP Engine

Processor Controls

Interrupts,

Breakpoints, Timers

Load/Store Unit #2

Local

Instruction

Memories

Processor

Interface (PIF)

to System Bus

Local Data

Memories

.

U
s
e
r D
e
fin
e
d
 E
x
e
c
u
tio
n
 U
n
its
,

R
e
g
is
te
r F
ile
s
 a
n
d
 In
te
rfa
c
e
s

. . .

Designer-defined FLIX
parallel execution
pipelines - “N” wide

Base ISA
Execution
Pipeline

Example of configurable

extensible processor
Configuration

Instruction Set

Extension

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
107

ESL Synthesis Design Flow

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
108

High-level/Behavioral

synthesis: past

• Used different code than RTL synthesis although

usually used Verilog or VHDL as inputs

– Multicycle

– Loops

– Memory access via arrays

• But fell short due to:

– Input language – HDLs not natural for algorithms

– Timing convergence issues

– Verification of RTL implementation

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
109

ESL Synthesis: present

• Overcomes limitations of past behavioral

or high-level synthesis:

– More natural input languages

• C or a C-related language (C++, SystemC, special

C dialects)

• Support for:

– Structure

– Concurrency

– Data types (e.g. bit-wise, fixed-point)

– Operation overloading to support polymorphic typing

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
110

ESL Synthesis: Other

requirements

• Natural input/output declarations
– Types or pragmas

• Verification compatibility
– E.g. using SystemC TLM models together with RTL-
level adaptors

• Control over quality of results
– Timing convergence

– Scheduling/latency constraints

– Resource allocation

– Compatibility with RTL flow “back end”

– General constraint handling

– Design space exploration

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
111

Not your grandfather’s

behavioral synthesis

• New tools have emerged with more

credible evaluation and some adoption

results

– Forte Cynthesizer

– Mentor Catapult

– NEC Cyber

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
112

Example code

/* Metaports and port data types */

typedef dctelem< sc_uint<8>, DCT_SIZE, DCT_SIZE > UINT8_DATA;

typedef p2p< UINT8_DATA, IF_LEVEL > UINT8_IF;

typedef dctelem< sc_int<12>, DCT_SIZE, DCT_SIZE > INT12_DATA;

typedef p2p< INT12_DATA, IF_LEVEL > INT12_IF;

/* Module Definition */

SC_MODULE(dct)

{

public:

sc_in< bool > clk;

sc_in< bool > rst;

UINT8_IF::base_in in;

INT12_IF::base_out out;

SC_CTOR(dct) : clk("clk"), rst("rst"), in("in"), out("out") {

SC_CTHREAD(thread0, clk.pos());

watching(rst.delayed() == 0);

}

private:

void thread0();

void dct_2d(sc_int<16> data[DCT_SIZE][DCT_SIZE]);

};

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
113

Example Code

void dct::thread0()

{

UINT8_DATA in_data;

INT12_DATA out_data;

sc_int<16> buf[DCT_SIZE][DCT_SIZE];

{

CYN_PROTOCOL("reset");

in.reset();

out.reset();

wait();

}

while(true) {

for(int r = 0; r < DCT_SIZE; r++) {

in_data = in.get();

for(int c = 0; c < DCT_SIZE; c++)

buf[r][c] = in_data[c];

}

dct_2d(buf);

for(int r = 0; r < DCT_SIZE; r++) {

for(int c = 0; c < DCT_SIZE; c++)

out_data.d[c] = buf[r][c];

out.put(out_data);

}

}

}

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
114

Example code – output ports

template <class T, typename L>

class p2p_base_out

{

public:

p2p_base_out(

const char* name=sc_gen_unique_name("p2p_out"))

: busy("busy")

, vld("vld")

, data("data")

{}

// Interface ports

sc_in<bool> busy;

sc_out<bool> vld;

sc_out<T> data;

// Binding functions

template <class C>

void bind(C& c) {

busy(c.busy);

vld(c.vld);

data(c.data);

}

….

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
115

Constraints as pragmas

void dct::dct_1d(sc_int<16> data[DCT_SIZE]) {

CYN_DPOPT("dct_1d");

…

}

void dct::dct_2d(sc_int<16> buf[DCT_SIZE][DCT_SIZE]) {

…

}

void dct::thread0()

{

…

while(true) {

CYN_INITIATE(8, "dct_pipe");

for(int r = 0; r < DCT_SIZE; r++) {

in_data = in.get();

for(int c = 0; c < DCT_SIZE; c++)

buf[r][c] = in_data[c];

}

dct_2d(buf);

for(int r = 0; r < DCT_SIZE; r++) {

for(int c = 0; c < DCT_SIZE; c++)

out_data.d[c] = buf[r][c];

out.put(out_data);

}

}

}

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
116

Design Space Exploration

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
117

The Prescription

• Variety of implementation alternatives if function must be
implemented in tuned hardware:
– Reuse of IP blocks

– Configuring RTL

– Configurable extensible processor

– Generating function-specific coprocessor

– High-level or ESL synthesis

• This generation of ESL synthesis is real.

• ESL Synthesis uses C/C++/SystemC or other C dialects as input

• Verification environments that work between ESL and RTL levels
have made progress

• Several commercial tools exist

• ESL Synthesis is thus a viable option for hardware implementation

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
118

Software Implementation

• Classical SW development methods

• Developing run-time software from ESL

tools

• Developing software using ESL models as

run-time environments (Virtual System

Prototypes)

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
119

Classical SW development

• Performance Estimation

– Historically, estimates often used processor

“MIPS” ratings

– But MIPS1 ≠ MIPS2

�Mandates use of ISSs

– But standalone ISSs don’t reflect the system

environment, especially memory

�Mandates use of Virtual System Prototypes

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
120

Classical Development Tools

• C is still dominant for embedded systems,

with some C++, C# and Java

• Standard IDEs from various vendors

• Emulation, ICE, evolving to on-chip

embedded processor trace

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
121

Developing run-time software

from ESL tools

• Algorithmic, e.g.

– MATLAB code generation to production code

• Some companies (Accelchip, now part of Xilinx,

was one)

• Catalytic was offering this, but now focusing more

on fast (C based) MATLAB modeling

• Many issues of generating efficient executable

code from actor libraries e.g. MATLAB, Simulink

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
122

Developing run-time software

from Models

• Control code viz. UML or SDL
– Some success with this over the years

– SDL has been used to generate real executable code as part of
telecom protocol stacks

– Code generation from UML is improving especially as recent
versions, e.g. UML 2.0, have allowed better modeling and
annotation of constraints to be incorporated

– Continues to be a “Holy Grail” for the UML tools companies

– Issues of code quality (especially optimizing across levels of the
“stack”) and debugging continue to be issues

– UML tools have become integrated with IDEs over time

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
123

Developing software using

ESL models

• Models are run-time environments (Virtual System
Prototypes)

• This is the area that is “hottest” as a pragmatic capability

• Commercial tools available from several vendors:
– CoWare, VaST, Synopsys (Virtio), ARM (Axys)

– Need support from IP model vendors
• ARM, Tensilica, Ceva, others

• As much value lies in the standard bus libraries for AMBA AHB,
AXI, OCP-IP as in the environment

• Analysis capabilities useful to some

– Often use both cycle-accurate, TLM and Fast functional models
for processors

• Debug/observability/integration with IDEs important

• Likely to see rapid development in this area

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
124

Example

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
125

The Prescription

• The two key ESL capabilities important for

SW today:

– Code generation from Models

• Keep watching the skies!

• Progress is being made

– Virtual System Prototype Models

• A reality today

• Acquire and use!

Summary, Futures and

Conclusions

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
127

Summary

We’ve talked
about
elements
of an ESL
“Flow”

Software

Implementation

Hardware

Implementation

Specification and Modeling

Post-Partitioning Verification

Post-Partitioning Analysis

Pre-Partitioning Analysis

Partitioning

Implementation Verification

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
128

Summary

• Pieces of this ESL “flow” are at different stages of evolution

• Specification
– Lots of languages to choose from

– Practices not yet standardized

– SystemC likely to become standard modeling glue

• Pre-Partitioning analysis
– Static methods have history, few users

– Dynamic (simulation) methods have history and lots of users, especially
in dataflow/algorithmic space

– Beware of implementation artifacts confusing early analysis

• Partitioning
– Still more of a manual process, supported by various models and

simulation

– Output of hardened partitions may be a Virtual System Prototype (VSP)

– Commercial modeling tools beginning to become credible

– SystemC/OSCI playing a growing role with commercial tools

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
129

Summary

• Post-Partitioning analysis
– May feedback into partitioning process

– Availability of modeling/simulation environments and IP models important to back
this up

• Post-Partitioning verification
– Interacts with other kinds of modeling and analysis environments

– Important step in building reusable verification plans that can migrate to
implementation step

• HW implementation
– Many different implementation options – configurable processors, coprocessor

synthesis, high-level synthesis

– Emerging ESL synthesis is “not your grandparent’s”

– Growing and credible use of ESL synthesis for blocks that must be HW

• SW implementation
– But HW takes the back seat to SW – SW everywhere we can; HW only where we

must

– SW implementation from ESL models (UML, SDL, etc.) still rare

– SW verification on ESL models (VSPs) is growing

• Implementation Verification

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
130

Futures

• Research

• Globalization

• Value Migration

• Education

• Commercial EDA

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
131

Research

• Metropolis

• SPACE

• Multi-processors

• Emerging architectures

– Homogeneous systems

– Heterogeneous systems

– ROSES

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
132

Globalization

• More people able to participate in the high-tech economy

• More people can contribute

• More people can consume
– Products may need wider range of derivatives across wider

global markets

• We have been here before
– Railroads

– Replacement of wind by steam at sea

– Communications and air travel

• Needs:
– IP policy harmonization to reasonable set of common accepted

practices

– Using standards to promote market development, not engage in
short-term protectionism

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
133

Value Migration

• Past: focus on EDA tools

• Emergence of IP industry

– Star vs Less-than-stellar

– IP value hard to maintain: migration to

platforms

• Cost of verification

– Can verification IP attract and maintain value?

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
134

Education

• What do future designers need to know?

• If they need to understand ESL

– What do they stop learning?

– How do they cross the HW-SW (Electrical

Engineering- Computer Science) divide?

– How do we move people from the details of

detail to the details of systems?

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
135

Commercial EDA

• Decline of ASIC/ASSP starts

• Rise of FPGA starts

• Decline of ASPs as products became commoditized

• FPGA pressures to lower ASPs

• Challenges of back end

• Complexity of front end

• IP industry – tools are an enabler, not a business in itself

• NOT the responsibility of designers to guarantee a viable
ESL market for EDA tool companies
– But if tools provide value, a viable market will emerge

– Remember open source and standards! Constrains revenue of
proprietary solutions

3/16/2007
Copyright © Brian Bailey, Grant Martin

and Andrew Piziali 2007
136

Conclusions

• ESL has made some significant progress in the
last few years

• After fits and starts since at least the mid 1990s,
we can see an ESL flow begin to take shape

• But a flow is more than just commercial tools

• Significant work is being done with research
tools, models and open source modeling
environments

• We urge everyone to
– Educate themselves on ESL

– Adopt what is usable now

– Monitor new developments and adopt when ready

Thank You. Questions?

Contact Information

brian_bailey@acm.org

gmartin@tensilica.com

andy@piziali.dv.org

