
MIT OpenCourseWare
http://ocw.mit.edu

6.094 Introduction to MATLAB®
January (IAP) 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.094
Introduction to Programming in MATLAB®

Lecture 5: Simulink®

Sourav Dey
Danilo Šćepanović

Ankit Patel
Patrick Ho

IAP 2009

What is Simulink?

• A model-based equation solver

• Some analysis packages (ANSYS, Multisim) have
built in equations modeling complex engineering
problems.

Save lots of time
Can only be used for tackling specific problems

• Simulink lets you build a GUI-based model and
simulates the result.

Unlimited complexity (constrained by runtime and
memory)
Adaptable for any field
Downside? You have to do the modeling work

Getting Started

• Create a new file

• Examine the Simulink Library Browser
Click on a library: “Sources”

Drag a block into Simulink: “Constant”

Visualize the block by going into “Sinks”

Drag a “Scope” into Simulink

Connections

• Click on the carat/arrow on the right of the
constant box

• Drag the line to the scope
You’ll get a hint saying you can quickly connect
blocks by hitting Ctrl
Connections between lines represent signals

• Click the play button

• Double click on the scope.
This will open up a chart of the variable over the
simulation time

Simulink Math

• Everything is visual in Simulink!

• Click on the library Continuous
Drag the integrator block between the constant and
the scope

• Play and click on scope.

• What happens?
Simulink has a built in ODE solver
The equation that represents your model is solved by
Simulink
We’ve represented

Behind the curtain

• Go to “Simulation”->”Configuration Parameters”
at the top menu

See ode45? Change the solver type here

Courtesy of The MathWorks, Inc. Used with permission.

So what’s going on?

• The toolboxes Simulink provides you are full of
modeling tools

• By selecting components that correspond to your
model, you can design a simulation

Toolboxes

• Math
Takes the signal and performs a math operation

» Add, subtract, round, multiply, gain, angle

• Continuous
Adds differential equations to the system

» Integrals, Derivatives, Transfer Functions,
State Space

• Discontinuities
Adds nonlinearities to your system

• Discrete
Simulates discrete difference equations
Useful for digital systems

Building systems

• Sources
» Step input, white noise, custom input, sine
wave, ramp input,

Provides input to your system

• Sinks
» Scope: Outputs to plot
» simout: Outputs to a MATLAB vector on workspace
» MATLAB mat file

Modifying Blocks

• Right click on the block, select the “Parameters” item
corresponding to the item type

• Transfer Function:
» Numerator on
first row
» Denominator on
second row

• Summing Junction:
» List of signs
determines
inputs to
junction
Not shown:
Sampling time row

Courtesy of The MathWorks, Inc. Used with permission.

Modifying Scopes

• Within the scope:
» Autoscale fits the axes
to the curve automatically
» Axes properties lets you
customize the axes

• Changing the number of axes:
» Left click on icon

» Change the number
of axes field

Courtesy of The MathWorks, Inc. Used with permission.

Courtesy of The MathWorks,
Inc. Used with permission.

Courtesy of The MathWorks, Inc. Used with permission.

First System

• Drag a summing
junction between the
constant and
integrator

• Change the signs to
|+-

• Click on the open
carat under the minus
sign and connect it to
the integrator output

Creating Subsystems

• Drag a box around the
parts of the subsystem

Summing Junction
Integrator

• Right click and select
“create subsystem”

• Double click the
subsystem:

The parts are now
inside

• What’s the system do
when you run it?

Example Systems

ODE
d3y/dt3 + a*d2y/dt2 +
b* dy/dt + c*y = F

Classical Control System

Courtesy of The MathWorks, Inc. Used with permission.
Courtesy of The
MathWorks, Inc.
Used with permission.

Example: Nervous System

• Neural circuits in animals often exhibit oscillatory behavior

• Use Simulink to model one behavior of this type:
Locomotion

– Limbs go “Left-right, left-right, left-right”

• Locomotive behaviors are generated by “central pattern
generators,” which oscillate on their own naturally

• When connected to an appendage, the central pattern
generator will adapt its frequency and move the
appendage. Open “RIOCPGDemo.mdl”

• Model based on Iwasaki, T., Zheng, M. (2006a). Sensory feedback
mechanism underlying entrainment of central pattern generator to
mechanical resonance. Biological Cybernetics, 94(4), 245-261

Central Pattern Generator Model

Limb

Scope for
Output

Playing with the model

• Look at scopes
What are the output signals?

• Delete signals
Especially the signal after the feedback gain

• Change gains
Muscular actuator gains
Switch feedback gain from negative to positive

• Look inside subsystems
What’s inside the CPG?
What’s inside the neuron firing dynamics?

Toolboxes

• Simulink has many advanced toolboxes
Control Systems
Neural Networks
Signal Processing
SimMechanics
Virtual Reality
Real Time

• Hopefully you’ll get to use some of these powerful tools!

	6.094�Introduction to Programming in MATLAB®
	What is Simulink?
	Getting Started
	Connections
	Simulink Math
	Behind the curtain
	So what’s going on?
	Toolboxes
	Building systems
	Modifying Blocks
	Modifying Scopes
	First System
	Creating Subsystems
	Example Systems
	Example: Nervous System
	Central Pattern Generator Model
	Playing with the model
	Toolboxes

