
MIT OpenCourseWare
http://ocw.mit.edu

6.094 Introduction to MATLAB®
January (IAP) 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.094
Introduction to Programming in MATLAB®

Sourav Dey
Danilo Šćepanović

Ankit Patel
Patrick Ho

IAP 2009

Lecture 1: Variables, Operations, and
Plotting

Course Layout

• Lectures (7pm-9pm)
1: Variables, Operations and Plotting
2: Visualization & Programming
3: Solving Equations, Fitting
4: Advanced Methods

Course Layout

• Problem Sets / Office Hours
One per day, should take about 3 hours to do
Submit doc or pdf (include pertinent code)

• Requirements for passing
Attend all lectures
Complete all problem sets (FAIL, Check or +)

• Prerequisites
Basic familiarity with programming
Basic linear algebra, differential equations, and
probability

Outline

(1) Getting Started
(2) Making Variables
(3) Manipulating Variables
(4) Basic Plotting

Getting Started

• To get MATLAB Student Version for yourself
» https://msca.mit.edu/cgi-bin/matlab

Use VPN client to enable off-campus access
Note: MIT certificates are required

• Open up MATLAB for Windows
Through the START Menu

• On Athena
» add matlab
» matlab &

Command Window

Current directory

Workspace

Command History

Courtesy of The MathWorks, Inc. Used with permission.

Customization

• File Preferences
Allows you personalize your MATLAB experience

Courtesy of The MathWorks, Inc. Used with permission.

MATLAB Basics

• MATLAB can be thought of as a super-powerful
graphing calculator

Remember the TI-83 from calculus?
With many more buttons (built-in functions)

• In addition it is a programming language
MATLAB is an interpreted language, like
Scheme
Commands executed line by line

Conversing with MATLAB

• who

MATLAB replies with the variables in your workspace

• what

MATLAB replies with the current directory and
MATLAB files in the directory

• why

• help

The most important function for learning MATLAB on
your own
More on help later

Outline

(1) Getting Started
(2) Making Variables
(3) Manipulating Variables
(4) Basic Plotting

Variable Types

• MATLAB is a weakly typed language
No need to initialize variables!

• MATLAB supports various types, the most often used are
» 3.84

64-bit double (default)
» ‘a’

16-bit char

• Most variables you’ll deal with will be arrays or matrices of
doubles or chars

• Other types are also supported: complex, symbolic, 16-bit
and 8 bit integers, etc.

Naming variables

• To create a variable, simply assign a value to a name:
» var1=3.14
» myString=‘hello world’

• Variable names
first character must be a LETTER
after that, any combination of letters, numbers and _
CASE SENSITIVE! (var1 is different from Var1)

• Built-in variables
i and j can be used to indicate complex numbers

pi has the value 3.1415926…

ans stores the last unassigned value (like on a calculator)

Inf and -Inf are positive and negative infinity

NaN represents ‘Not a Number’

Hello World

• Here are several flavors of Hello World to introduce MATLAB

• MATLAB will display strings automatically
» ‘Hello 6.094’

• To remove “ans =“, use disp()
» disp('Hello 6.094')

• sprintf() allows you to mix strings with variables
» class=6.094;
» disp(sprintf('Hello %g', class))

The format is C-syntax

Scalars

• A variable can be given a value explicitly
» a = 10

shows up in workspace!

• Or as a function of explicit values and existing variables
» c = 1.3*45-2*a

• To suppress output, end the line with a semicolon
» cooldude = 13/3;

Arrays

• Like other programming languages, arrays are an
important part of MATLAB

• Two types of arrays

(1) matrix of numbers (either double or complex)

(2) cell array of objects (more advanced data structure)

MATLAB makes vectors easy!
That’s its power!

Row Vectors

• Row vector: comma or space separated values between
brackets
» row = [1 2 5.4 -6.6];
» row = [1, 2, 5.4, -6.6];

• Command window:

• Workspace:

Courtesy of The MathWorks, Inc. Used with permission.

Column Vectors

• Column vector: semicolon separated values between
brackets
» column = [4;2;7;4];

• Command window:

• Workspace:

Courtesy of The MathWorks, Inc. Used with permission.

Matrices

• Make matrices like vectors

• Element by element
» a= [1 2;3 4];

• By concatenating vectors or matrices (dimension matters)
» a = [1 2];
» b = [3 4];
» c = [5;6];

» d = [a;b];
» e = [d c];
» f = [[e e];[a b a]];

1 2
3 4

a
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

save/clear/load

• Use save to save variables to a file
» save myfile a b

saves variables a and b to the file myfile.mat
myfile.mat file in the current directory
Default working directory is

» \MATLAB\work
Create own folder and change working directory to it

» MyDocuments\6.094\day1

• Use clear to remove variables from environment
» clear a b

look at workspace, the variables a and b are gone

• Use load to load variable bindings into the environment
» load myfile

look at workspace, the variables a and b are back

• Can do the same for entire environment
» save myenv; clear all; load myenv;

Exercise: Variables

• Do the following 5 things:
Create the variable r as a row vector with values 1 4
7 10 13
Create the variable c as a column vector with values
13 10 7 4 1
Save these two variables to file varEx
clear the workspace
load the two variables you just created

» r=[1 4 7 10 13];
» c=[13; 10; 7; 4; 1];
» save varEx r c
» clear r c
» load varEx

Outline

(1) Getting Started
(2) Making Variables
(3) Manipulating Variables
(4) Basic Plotting

Basic Scalar Operations

• Arithmetic operations (+,-,*,/)
» 7/45
» (1+i)*(2+i)
» 1 / 0
» 0 / 0

• Exponentiation (^)
» 4^2
» (3+4*j)^2

• Complicated expressions, use parentheses
» ((2+3)*3)^0.1

• Multiplication is NOT implicit given parentheses
» 3(1+0.7) gives an error

• To clear cluttered command window
» Clc

Built-in Functions

• MATLAB has an enormous library of built-in functions

• Call using parentheses – passing parameter to function
» sqrt(2)
» log(2), log10(0.23)
» cos(1.2), atan(-.8)
» exp(2+4*i)
» round(1.4), floor(3.3), ceil(4.23)
» angle(i); abs(1+i);

Help/Docs

• To get info on how to use a function:
» help sin

Help contains related functions
• To get a nicer version of help with examples and easy-to-

read descriptions:
» doc sin

• To search for a function by specifying keywords:
» doc + Search tab

» lookfor hyperbolic

One-word description of what
you're looking for

Exercise: Scalars

• Verify that e^(i*x) = cos(x) + i*sin(x) for a few values of x.

» x = pi/3;
» a = exp(i*x)
» b = cos(x)+ i*sin(x)
» a-b

size & length

• You can tell the difference between a row and a column
vector by:

Looking in the workspace
Displaying the variable in the command window
Using the size function

• To get a vector's length, use the length function

transpose

• The transpose operators turns a column vector into a row
vector and vice versa
» a = [1 2 3 4]
» transpose(a)

• Can use dot-apostrophe as short-cut
» a.'

• The apostrophe gives the Hermitian-transpose, i.e.
transposes and conjugates all complex numbers
» a = [1+j 2+3*j]
» a'
» a.'

• For vectors of real numbers .' and ' give same result

Addition and Subtraction

• Addition and subtraction are element-wise; sizes must
match (unless one is a scalar):

• The following would give an error
» c = row + column

• Use the transpose to make sizes compatible
» c = row’ + column
» c = row + column’

• Can sum up or multiply elements of vector
» s=sum(row);
» p=prod(row);

[]
[]
[]

12 3 32 11

2 11 30 32

14 14 2 21

−

+ −

=

12 3 9
1 1 2
10 13 23
0 33 33

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥− =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Element-Wise Functions

• All the functions that work on scalars also work on vectors
» t = [1 2 3];
» f = exp(t);

is the same as
» f = [exp(1) exp(2) exp(3)];

• If in doubt, check a function’s help file to see if it handles
vectors elementwise

• Operators (* / ^) have two modes of operation
element-wise
standard

Operators: element-wise

• To do element-wise operations, use the dot. BOTH
dimensions must match (unless one is scalar)!
» a=[1 2 3];b=[4;2;1];
» a.*b, a./b, a.^b all errors
» a.*b’, a./b’, a.^(b’) all valid

[]
4

1 2 3 2
1

1 4 4
2 2 4
3 1 3

3 1 3 1 3 1

.* ERROR

.*

.*

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
× × = ×

1 1 1 1 2 3 1 2 3
2 2 2 1 2 3 2 4 6
3 3 3 1 2 3 3 6 9

3 3 3 3 3 3

.*

.*

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

× × = ×

2 2

2 2

1 2 1 2
2

3 4 3 4
.^

Can be any dimension

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

Operators: standard

• Multiplication can be done in a standard way or element-wise
• Standard multiplication (*) is either a dot-product or an outer-

product
Remember from linear algebra: inner dimensions must MATCH!!

• Standard exponentiation (^) implicitly uses *
Can only be done on square matrices or scalars

• Left and right division (/ \) is same as multiplying by inverse
Our recommendation: just multiply by inverse (more on this
later)

[]
4

1 2 3 2 11
1

1 3 3 1 1 1

*

*

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦

× × = ×

1 1 1 1 2 3 3 6 9
2 2 2 1 2 3 6 12 18
3 3 3 1 2 3 9 18 27

3 3 3 3 3 3

*

*

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

× × = ×

1 2 1 2 1 2
2

3 4 3 4 3 4
^ *

Must be square to do powers

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Exercise: Vector Operations

• Find the inner product between [1 2 3] and [3 5 4]
» a=[1 2 3]*[3 5 4]’

• Multiply the same two vectors element-wise
» b=[1 2 3].*[3 5 4]

• Calculate the natural log of each element of the resulting
vector
» c=log(b)

Automatic Initialization

• Initialize a vector of ones, zeros, or random numbers
» o=ones(1,10)

row vector with 10 elements, all 1
» z=zeros(23,1)

column vector with 23 elements, all 0
» r=rand(1,45)

row vector with 45 elements (uniform [0,1])
» n=nan(1,69)

row vector of NaNs (useful for representing uninitialized
variables)

The general function call is:
var=zeros(M,N);

Number of rows Number of columns

Automatic Initialization

• To initialize a linear vector of values use linspace
» a=linspace(0,10,5)

starts at 0, ends at 10 (inclusive), 5 values

• Can also use colon operator (:)
» b=0:2:10

starts at 0, increments by 2, and ends at or before 10
increment can be decimal or negative

» c=1:5
if increment isn’t specified, default is 1

• To initialize logarithmically spaced values use logspace
similar to linspace

Exercise: Vector Functions

• Make a vector that has 10,000 samples of
f(x) = e^{-x}*cos(x), for x between 0 and 10.

» x = linspace(0,10,10000);
» f = exp(-x).*cos(x);

Vector Indexing

• MATLAB indexing starts with 1, not 0
We will not respond to any emails where this is the
problem.

• a(n) returns the nth element

• The index argument can be a vector. In this case, each
element is looked up individually, and returned as a vector
of the same size as the index vector.
» x=[12 13 5 8];
» a=x(2:3); a=[13 5];
» b=x(1:end-1); b=[12 13 5];

[]13 5 9 10

a(1) a(2) a(3) a(4)

Matrix Indexing

• Matrices can be indexed in two ways
using subscripts (row and column)
using linear indices (as if matrix is a vector)

• Matrix indexing: subscripts or linear indices

• Picking submatrices
» A = rand(5) % shorthand for 5x5 matrix
» A(1:3,1:2) % specify contiguous submatrix
» A([1 5 3], [1 4]) % specify rows and columns

14 33
9 8
⎡ ⎤
⎢ ⎥
⎣ ⎦

b(1)

b(2)

b(3)

b(4)

14 33
9 8
⎡ ⎤
⎢ ⎥
⎣ ⎦

b(1,1)

b(2,1)

b(1,2)

b(2,2)

Advanced Indexing 1

• The index argument can be a matrix. In this case, each
element is looked up individually, and returned as a matrix
of the same size as the index matrix.

» a=[-1 10 3 -2];
» b=a([1 2 4;3 4 2]);

• To select rows or columns of a matrix, use the :

» d=c(1,:); d=[12 5];
» e=c(:,2); e=[5;13];
» c(2,:)=[3 6]; %replaces second row of c

1 10 2
3 2 10

b
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦

12 5
2 13

c ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

Advanced Indexing 2

• MATLAB contains functions to help you find desired values
within a vector or matrix
» vec = [1 5 3 9 7]

• To get the minimum value and its index:
» [minVal,minInd] = min(vec);

• To get the maximum value and its index:
» [maxVal,maxInd] = max(vec);

• To find any the indices of specific values or ranges
» ind = find(vec == 9);
» ind = find(vec > 2 & vec < 6);

find expressions can be very complex, more on this later

• To convert between subscripts and indices, use ind2sub,
and sub2ind. Look up help to see how to use them.

Exercise: Vector Indexing

• Evaluate a sine wave at 1,000 points between 0 and 2*pi.
• What’s the value at

Index 55
Indices 100 through 110

• Find the index of
the minimum value,
the maximum value, and
values between -0.001 and 0.001

» x = linspace(0,2*pi,1000);
» y=sin(x);
» y(55)
» y(100:110)
» [minVal,minInd]=min(y)
» [maxVal,maxInd]=max(y)
» inds=find(y>-0.001 & y<0.001)

BONUS Exercise: Matrices

• Make a 3x100 matrix of zeros, and a vector x that has 100 values
between 0 and 10
» mat=zeros(3,100);
» x=linspace(0,10,100);

• Replace the first row of the matrix with cos(x)
» mat(1,:)=cos(x);

• Replace the second row of the matrix with log((x+2)^2)
» mat(2,:)=log((x+2).^2);

• Replace the third row of the matrix with a random vector of the
correct size
» mat(3,:)=rand(1,100);

• Use the sum function to compute row and column sums of mat
(see help)
» rs = sum(mat,2);
» cs = sum(mat); % default dimension is 1

Outline

(1) Getting Started
(2) Making Variables
(3) Manipulating Variables
(4) Basic Plotting

Plotting Vectors

• Example
» x=linspace(0,4*pi,10);
» y=sin(x);

• Plot values against their index
» plot(y);

• Usually we want to plot y versus x
» plot(x,y);

MATLAB makes visualizing data
fun and easy!

What does plot do?

• plot generates dots at each (x,y) pair and then connects the dots
with a line

• To make plot of a function look smoother, evaluate at more points
» x=linspace(0,4*pi,1000);
» plot(x,sin(x));

• x and y vectors must be same size or else you’ll get an error
» plot([1 2], [1 2 3])

error!!

10 x values:

0 2 4 6 8 10 12 14
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1000 x values:

Plot Options

• Can change the line color, marker style, and line style by
adding a string argument
» plot(x,y,’k.-’);

• Can plot without connecting the dots by omitting line style
argument
» plot(x,y,’.’)

• Look at help plot for a full list of colors, markers, and
linestyles

color marker line-style

Other Useful plot Commands

• Much more on this in Lecture 2, for now some simple
commands

• To plot two lines on the same graph
» hold on;

• To plot on a new figure
» figure;
» plot(x,y);

• Play with the figure GUI to learn more
add axis labels
add a title
add a grid
zoom in/zoom out

Exercise: Plotting

• Plot f(x) = e^x*cos(x) on the interval x = [0 10]. Use a red
solid line with a suitable number of points to get a good
resolution.

» x=0:.01:10;
» plot(x,exp(x).*cos(x),’r’);

End of Lecture 1

(1) Getting Started
(2) Making Variables
(3) Manipulating Variables
(4) Basic Plotting

Hope that wasn’t too much!!

	6.094�Introduction to Programming in MATLAB®
	Course Layout
	Course Layout
	Outline
	Getting Started
	Customization
	MATLAB Basics
	Conversing with MATLAB
	Outline
	Variable Types
	Naming variables
	Hello World
	Scalars
	Arrays
	Row Vectors
	Column Vectors
	Matrices
	save/clear/load
	Exercise: Variables
	Outline
	Basic Scalar Operations
	Built-in Functions
	Help/Docs
	Exercise: Scalars
	size & length
	transpose
	Addition and Subtraction
	Element-Wise Functions
	Operators: element-wise
	Operators: standard
	Exercise: Vector Operations
	Automatic Initialization
	Automatic Initialization
	Exercise: Vector Functions
	Vector Indexing
	Matrix Indexing
	Advanced Indexing 1
	Advanced Indexing 2
	Exercise: Vector Indexing
	BONUS Exercise: Matrices
	Outline
	Plotting Vectors
	What does plot do?
	Plot Options
	Other Useful plot Commands
	Exercise: Plotting
	End of Lecture 1

