
MIT OpenCourseWare
http://ocw.mit.edu

6.094 Introduction to MATLAB®
January (IAP) 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.094
Introduction to Programming in MATLAB®

Lecture 4: Advanced Methods

Sourav Dey
Danilo Šćepanović

Ankit Patel
Patrick Ho

IAP 2009

Outline

(1) Probability and Statistics
(2) Data Structures
(3) Images and Animation
(4) Debugging
(5) Symbolic Math
(6) Other Toolboxes

Statistics

• Whenever analyzing data, you have to compute statistics
» scores = 100*rand(1,100);

• Built-in functions
mean, median, mode

• To group data into a histogram
» hist(scores,5:10:95);

makes a histogram with bins centered at 5, 15, 25…95
» N=histc(scores,0:10:100);

returns the number of occurrences between the specified
bin edges 0 to <10, 10 to <20…90 to <100.

Random Numbers

• Many probabilistic processes rely on random numbers

• MATLAB contains the common distributions built in
» rand

draws from the uniform distribution from 0 to 1
» randn

draws from the standard normal distribution (Gaussian)
» random

can give random numbers from many more distributions
see doc random for help
the docs also list other specific functions

• You can also seed the random number generators
» rand(‘state’,0)

Changing Mean and Variance

• We can alter the given distributions
» y=rand(1,100)*10+5;

gives 100 uniformly distributed numbers between 5 and 15
» y=floor(rand(1,100)*10+6);

gives 100 uniformly distributed integers between 10 and
15. floor or ceil is better to use here than round

» y=randn(1,1000)
» y2=y*5+8

increases std to 5 and makes the mean 8
-25 -20 -15 -10 -5 0 5 10 15 20 25
0

50

100

150

200

250

300

350

400

-25 -20 -15 -10 -5 0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

Exercise: Probability

• We will simulate Brownian motion in 1 dimension. Call the script
‘brown’

• Make a 10,000 element vector of zeros
• Write a loop to keep track of the particle’s position at each time
• Start at 0. To get the new position, pick a random number, and if

it’s <0.5, go left; if it’s >0.5, go right. Store each new position in
the kth position in the vector

• Plot a 50 bin histogram of the positions.

Exercise: Probability

• We will simulate Brownian motion in 1 dimension. Call the script
‘brown’

• Make a 10,000 element vector of zeros
• Write a loop to keep track of the particle’s position at each time
• Start at 0. To get the new position, pick a random number, and if

it’s <0.5, go left; if it’s >0.5, go right. Store each new position in
the kth position in the vector

• Plot a 50 bin histogram of the positions.

» x=zeros(10000,1);
» for n=2:10000
» if rand<0.5
» x(n)=x(n-1)-1;
» else
» x(n)=x(n-1)+1;
» end
» end
» figure;
» hist(x,50);

Outline

(1) Probability and Statistics
(2) Data Structures
(3) Images and Animation
(4) Debugging
(5) Symbolic Math
(6) Other Toolboxes

Advanced Data Structures

• We have used 2D matrices
Can have n-dimensions
Every element must be the same type (ex. integers,
doubles, characters…)
Matrices are space-efficient and convenient for calculation

• Sometimes, more complex data structures are more
appropriate

Cell array: it's like an array, but elements don't have to be
the same type
Structs: can bundle variable names and values into one
structure

– Like object oriented programming in MATLAB

Cells: organization

• A cell is just like a matrix, but each field can contain
anything (even other matrices):

• One cell can contain people's names, ages, and the ages of
their children

• To do the same with matrices, you would need 3 variables
and padding

3x3 Matrix

1.2 -3 5.5

-2.4 15 -10

7.8 -1.1 4

3x3 Cell Array

32

27 1

18

J o h n

M a r y

L e o

2

4

[]

Cells: initialization

• To initialize a cell, specify the size
» a=cell(3,10);

a will be a cell with 3 rows and 10 columns

• or do it manually, with curly braces {}
» c={'hello world',[1 5 6 2],rand(3,2)};

c is a cell with 1 row and 3 columns

• Each element of a cell can be anything

• To access a cell element, use curly braces {}
» a{1,1}=[1 3 4 -10];
» a{2,1}='hello world 2';
» a{1,2}=c{3};

Structs

• Structs allow you to name and bundle relevant variables
Like C-structs, which are objects with fields

• To initialize an empty struct:
» s=struct([]);

size(s) will be 1x1
initialization is optional but is recommended when using large
structs

• To add fields
» s.name = 'Jack Bauer';
» s.scores = [95 98 67];
» s.year = 'G3';

Fields can be anything: matrix, cell, even struct
Useful for keeping variables together

• For more information, see doc struct

Struct Arrays

• To initialize a struct array, give field, values pairs
» ppl=struct('name',{'John','Mary','Leo'},...
'age',{32,27,18},'childAge',{[2;4],1,[]});

size(s2)=1x3
every cell must have the same size

» person=ppl(2);
person is now a struct with fields name, age, children
the values of the fields are the second index into each cell

» person.name
returns 'Mary' ppl ppl(1) ppl(2) ppl(3)

name: 'John' 'Mary' 'Leo'

age: 32 27 18

childAge: [2;4] 1 []

Structs: access

• To access 1x1 struct fields, give name of the field
» stu=s.name;
» scor=s.scores;

1x1 structs are useful when passing many variables to a
function. put them all in a struct, and pass the struct

• To access nx1 struct arrays, use indices
» person=ppl(2);

person is a struct with name, age, and child age
» personName=ppl(2).name;

personName is 'Mary'
» a=[ppl.age];

a is a 1x3 vector of the ages

Exercise: Cells

• Write a script called sentGen
• Make a 3x2 cell, and put people’s names into the first

column, and adjectives into the second column
• Pick two random integers (values 1 to 3)
• Display a sentence of the form ‘[name] is [adjective].’
• Run the script a few times

Exercise: Cells

• Write a script called sentGen
• Make a 3x2 cell, and put people’s names into the first

column, and adjectives into the second column
• Pick two random integers (values 1 to 3)
• Display a sentence of the form ‘[name] is [adjective].’
• Run the script a few times

» c=cell(3,2);
» c{1,1}=‘John’;c{2,1}=‘Mary-Sue’;c{3,1}=‘Gomer’;
» c{1,2}=‘smart’;c{2,2}=‘blonde’;c{3,2}=‘hot’
» r1=ceil(rand*3);r2=ceil(rand*3);
» disp([c{r1,1}, ’ is ‘, c{r2,2}, ’.’]);

Outline

(1) Probability and Statistics
(2) Data Structures
(3) Images and Animation
(4) Debugging
(5) Symbolic Math
(6) Other Toolboxes

Importing/Exporting Images

• Images can be imported into matlab
» im=imread('myPic.jpg');

• MATLAB supports almost all image formats
jpeg, tiff, gif, bmp, png, hdf, pcx, xwd, ico, cur, ras, pbm,
pgm, ppm
see help imread for a full list and details

• To write an image, give an rgb matrix or indices and
colormap
» imwrite(mat,jet(256),'test.jpg','jpg');

see help imwrite for more options

Animations

• MATLAB makes it easy to capture movie frames and play
them back automatically

• The most common movie formats are:
avi
animated gif

• Avi
good when you have ‘natural’ frames with lots of colors and
few clearly defined edges

• Animated gif
Good for making movies of plots or text where only a few
colors exist (limited to 256) and there are well-defined
lines

Making Animations

• Plot frame by frame, and pause in between
» close all
» for t=1:30
» imagesc(rand(200));
» colormap(gray);
» pause(.5);
» end

Saving Animations as Movies

• A movie is a series of captured frames
» close all
» for n=1:30
» imagesc(rand(200));
» colormap(gray);
» M(n)=getframe;
» end

• To play a movie in a figure window
» movie(M,2,30);

Loops the movie 2 times at 30 frames per second

• To save as an .avi file on your hard drive
» movie2avi(M,'testMovie.avi','FPS',30);

• See book appendix or docs for more information

Handles

• Every graphics object has a handle
» h=plot(1:10,rand(1,10));

gets the handle for the plotted line
» h2=gca;

gets the handle for the current axis
» h3=gcf;

gets the handle for the current figure

• To see the current property values, use get
» get(h);
» yVals=get(h,'YData');

• To change the properties, use set
» set(h2,'FontName','Arial','XScale','log');
» set(h,'LineWidth',1.5,'Marker','*');

• Everything you see in a figure is completely customizable
through handles

Outline

(1) Probability and Statistics
(2) Data Structures
(3) Images and Animation
(4) Debugging
(5) Symbolic Math
(6) Other Toolboxes

display

• When debugging functions, use disp to print messages
» disp('starting loop')
» disp('loop is over')

disp prints the given string to the command window

• It's also helpful to show variable values
» disp(strcat(['loop iteration ',num2str(n)]));

strcat concatenates the given strings
Sometimes it's easier to just remove some semicolons

Debugging

• To use the debugger, set breakpoints
Click on – next to line numbers in MATLAB files
Each red dot that appears is a breakpoint
Run the program
The program pauses when it reaches a breakpoint
Use the command window to probe variables
Use the debugging buttons to control debugger

Two breakpoints

Where the program is now

Clear breakpoint

Step to next

Stop execution; exit

Courtesy of The MathWorks, Inc. Used with permission.

Exercise: Debugging

• Use the debugger to fix the errors in the following code:

Courtesy of The MathWorks, Inc. Used with permission.

Performance Measures

• It can be useful to know how long your code takes to run
To predict how long a loop will take
To pinpoint inefficient code

• You can time operations using tic/toc:
» tic
» CommandBlock1
» a=toc;
» CommandBlock2
» b=toc;

tic resets the timer
Each toc returns the current value in seconds
Can have multiple tocs per tic

Performance Measures

• For more complicated programs, use the profiler
» profile on

Turns on the profiler. Follow this with function calls
» profile viewer

Displays gui with stats on how long each subfunction took

Courtesy of The MathWorks, Inc. Used with permission.

Outline

(1) Probability and Statistics
(2) Data Structures
(3) Images and Animation
(4) Debugging
(5) Symbolic Math
(6) Other Toolboxes

What are Toolboxes?

• Toolboxes contain functions specific to a particular field
for example: signal processing, statistics, optimization

• It's generally more efficient to use MATLAB's toolboxes
rather than redefining the functions yourself

saves coding/debugging time
some functions are compiled, so they run faster
HOWEVER there may be mistakes in MATLAB’s functions
and there may also be surprises

• MATLAB on Athena contains all the toolboxes

• Here are a few particularly useful ones for EECS…

Symbolic Toolbox

• Don’t do nasty calculations by hand!
• Symbolics vs. Numerics

Advantages Disadvantages

Symbolic •Analytical solutions
•Lets you intuit
things about
solution form

•Sometimes can't be
solved
•Can be overly
complicated

Numeric •Always get a
solution
•Can make solutions
accurate
•Easy to code

•Hard to extract a
deeper understanding
•Num. methods
sometimes fail
•Can take a while to
compute

Symbolic Variables

• Symbolic variables are a type, like double or char

• To make symbolic variables, use sym
» a=sym('1/3');
» b=sym('4/5');

fractions remain as fractions
» c=sym('c','positive');

can add tags to narrow down scope
see help sym for a list of tags

• Or use syms
» syms x y real

shorthand for x=sym('x','real'); y=sym('y','real');

Symbolic Expressions

• Multiply, add, divide expressions
» d=a*b

does 1/3*4/5=4/15;

» expand((a-c)^2);
multiplies out

» factor(ans)
factors the expression

Cleaning up Symbolic Statements

» pretty(ans)
makes it look nicer

» collect(3*x+4*y-1/3*x^2-x+3/2*y)
collects terms

» simplify(cos(x)^2+sin(x)^2)
simplifies expressions

» subs(‘c^2’,c,5)
Replaces variables with numbers
or expressions

» subs(‘c^2’,c,x/7)

ans=
25

ans=
1/49*x^2

More Symbolic Operations

• We can do symbolics with matrices too
» mat=sym('[a b;c d]');

» mat2=mat*[1 3;4 -2];
compute the product

» d=det(mat)
compute the determinant

» i=inv(mat)
find the inverse

• You can access symbolic matrix elements as before
» i(1,2)

Exercise: Symbolics

• The equation of a circle of radius r centered at (a,b) is
given by: (x-a)^2 + (y-b)^2 = r^2.

• Expand this equation into the form Ax^2 + Bx+Cxy + Dy +
Ey^2 = F and find the expression for the coefficients in
terms of a,b, and r.

Exercise: Symbolics

• The equation of a circle of radius r centered at (a,b) is
given by: (x-a)^2 + (y-b)^2 = r^2.

• Expand this equation into the form Ax^2 + Bx+Cxy + Dy +
Ey^2 = F and find the expression for the coefficients in
terms of a,b, and r.

» syms a b r x y
» pretty(expand((x-a).^2 + (y-b).^2))

Outline

(1) Probability and Statistics
(2) Data Structures
(3) Images and Animation
(4) Debugging
(5) Symbolic Math
(6) Other Toolboxes

Signal Processing Toolbox

• MATLAB is often used for signal processing (fft)
• What you can do:

filter design
statistical signal processing
Laplace transforms

• Related Toolboxes
Communications
Wavelets
RF
Image Processing

Control System Toolbox

• The control systems toolbox contains functions helpful for
analyzing systems with feedback

• Simulation of LTI system function
• Discrete time or continuous time
• You will be exposed to it in 6.003
• Can easily study step response, etc. modal analysis.

• Related toolboxes:
System Identification
Robust Control – modern control theory
Model Predictive Control

Statistics Toolbox

• For hardcore statistics and data-analysis
Principal component analysis
Independent component analysis
Tests of significance (chi squared, t-tests…)

• Related Toolboxes
Spline – for fitting
Bioinformatics
Neural Networks

Optimization Toolbox

• For more hardcore optimization problems – that occur in
OR, business, engineering

linear programming
interior point methods
quadratic methods

SIMULINK

• Interactive graphical environment
• Block diagram based MATLAB add-on environment
• Design, simulate, implement, and test control, signal

processing, communications, and other time-varying
systems

Courtesy of The MathWorks, Inc. Used with permission.

Central File Exchange

• The website – the MATLAB Central File Exchange!!
• Lots of people's code is there
• Tested and rated – use it to expand MATLAB's functionality

• http://www.mathworks.com/matlabcentral/

MATLAB Final Exam

• Brownian Motion stop-animation – integrating loops,
randomization, visualization

• Make a function brown2d(numPts), where numPts is the
number of points that will be doing Brownian motion

• Plot the position in (x,y) space of each point (start initially
at 0,0). Set the x and y limits so they’re consistent.

• After each timestep, move each x and y coordinate by
randn*.1

• Pause by 0.001 between frames
• Turn on the DoubleBuffer property to remove flicker

» set(gcf,’DoubleBuffer’,’on’);

• Ask us for help if needed!

End of Lecture 4

(1) Data Structures
(2) Symbolics
(3) Probability
(4) Toolboxes

THE END

Monte-Carlo Simulation

• A simple way to model complex stochastic systems
• Use random numbers to control state changes

• This system represents a complex reaction
• The numbers by the arrows show the propensity of the

system to go from one state to another
• If you start with 1 molecule of A, how does the system

behave with time?

E

D C

BA
60

60

60

60

47

47 47

47
2

2 2

2

20 20

20 20

Example: Monte-Carlo

• This MATLAB file will track the behavior of the molecule

Courtesy of The MathWorks, Inc. Used with permission.

Example: Monte-Carlo

• We can run the code 1000 times to simulate 1000 molecules
» s=zeros(200,5);
» for n=1:1000
» st=MC(200);
» for state=0:4
» s(:,state+1)= s(:,state+1)+(st==state);
» end
» end

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

900

1000
A

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450
B

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350
C

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400
D

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

900

1000
E

	6.094�Introduction to Programming in MATLAB®
	Outline
	Statistics
	Random Numbers
	Changing Mean and Variance
	Exercise: Probability
	Exercise: Probability
	Outline
	Advanced Data Structures
	Cells: organization
	Cells: initialization
	Structs
	Struct Arrays
	Structs: access
	Exercise: Cells
	Exercise: Cells
	Outline
	Importing/Exporting Images
	Animations
	Making Animations
	Saving Animations as Movies
	Handles
	Outline
	display
	Debugging
	Exercise: Debugging
	Performance Measures
	Performance Measures
	Outline
	What are Toolboxes?
	Symbolic Toolbox
	Symbolic Variables
	Symbolic Expressions
	Cleaning up Symbolic Statements
	More Symbolic Operations
	Exercise: Symbolics
	Exercise: Symbolics
	Outline
	Signal Processing Toolbox
	Control System Toolbox
	Statistics Toolbox
	Optimization Toolbox
	SIMULINK
	Central File Exchange
	MATLAB Final Exam
	End of Lecture 4
	Monte-Carlo Simulation
	Example: Monte-Carlo
	Example: Monte-Carlo

