MIT OpenCourseWare
http://ocw.mit.edu

6.094 Introduction to MATLAB®
January (IAP) 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.094
Introduction to Programming in MATLAB®

Lecture 1: Variables, Operations, and
Plotting

Sourav Dey
Danilo Séepanovié
Ankit Patel
Patrick Ho

IAP 2009

e Lectures (7/pm-9pm)
»1: Variables, Operations and Plotting
»2: Visualization & Programming
»3:. Solving Equations, Fitting
»4: Advanced Methods

e Problem Sets / Office Hours
» One per day, should take about 3 hours to do
» Submit doc or pdf (include pertinent code)

e Reqguirements for passing
» Attend all lectures
» Complete all problem sets (FAIL, Check or +)

e Prerequisites
» Basic familiarity with programming

» Basic linear algebra, differential equations, and
probability

(1) Getting Started

e To get MATLAB Student Version for yourself
» https://msca.mit.edu/cgi-bin/matlab

» Use VPN client to enable off-campus access
» Note: MIT certificates are required

e Open up MATLAB for Windows
» Through the START Menu

e On Athena
» add matlab

» matlab &

Window Help

R R IR T T ———

o N sl =t e el
>» textVar="matlab’

textVar =
matlab

iR

Command Window

Workspace Current DireCtary

taylor{(x./ {14*logl0{x)+11.455)),10%{-11_.455/14}}
SYIS X

taylor{(x./ {14*logl0{x)+11.455)),10%{-11_.455/14}}
t—— §/27/05 11:17 &M —-%

load catERBs

w=1./gausswin (54} ;

Command History

&—— 9/21/05 11:53 AM —-%

syms (Tx', TdT)

syms('a’)
int{'exp(-x"2/a)",0,d/2)
&—— 12/0%/05 1:01 BM —-%
cle

a=1l0;

b=[1 3 5; 3 3 2]

textvar="matlab’ Courtesy of The MathWorks, Inc. Used with permission.

1+3

= a=10;

4\ Start

Customization

e File &> Preferences
» Allows you personalize your MATLAB experience

! Preferences g@@

| E-General Colors Preferences
MAT-Files
Confirmation Dialogs rDeskiop tool colors | =
Source Control
| Use system colors
ultithreading ¥
[+-Keyboard [M - M-
-, L : = 5|
F . M-File: synkaz highlighting colars - 5
----- m Keywords E] Comments E] .
..... M_L t |
_____ Cu:un:'nand Windaow Strings E] IUnkerminated strings E]:
----- Command Hiskory Syskem commands E] Errors E] .
[+-Editor/Debugger . =
..... Help ~Sample
""" Web % preate a file for output
""" Current F"re':t':'w ltouch tescFile.txto
""" Array Editor fid = fopen('testFile.txt', 'w'):
----- Wiarkspace " N . —
----- GUIDE o o . _
_____ Fiffis Sariss Tooks fprintf(fid,'%6.2f “n, 1i):
[#-Figure Copy Template enc
"
[I] [Cancel] [Apply] [Help]

Courtesy of The MathWorks, Inc. Used with permission.

e MATLAB can be thought of as a super-powerful
graphing calculator

» Remember the T1-83 from calculus?
» With many more buttons (built-in functions)

e |In addition it is a programming language
» MATLAB is an interpreted language, like
Scheme

» Commands executed line by line

who
» MATLAB replies with the variables in your workspace

what

» MATLAB replies with the current directory and
MATLAB files in the directory

why

help

» The most important function for learning MATLAB on
your own

» More on help later

(2) Making Variables

MATLAB is a weakly typed language
» No need to initialize variables!

MATLAB supports various types, the most often used are
» 3.84

» 64-bit double (default)

» a
» 16-bit char

Most variables you’ll deal with will be arrays or matrices of
doubles or chars

Other types are also supported: complex, symbolic, 16-bit
and 8 bit integers, etc.

e To create a variable, simply assign a value to a name:
» varl=3.14

» myString=“hello world”

e Variable names
» first character must be a LETTER
» after that, any combination of letters, numbers and _
» CASE SENSITIVE! (varl is different from Varl)

e Built-in variables
» 1 and J can be used to indicate complex numbers
» pl has the value 3.1415926...
» ans stores the last unassigned value (like on a calculator)
» InT and - InT are positive and negative infinity
» NaN represents ‘Not a Number’

Here are several flavors of Hello World to introduce MATLAB

MATLAB will display strings automatically
» “Hello 6.094"

To remove “ans =“, use disp()
» disp("Hello 6.094%)

sprintf() allows you to mix strings with variables
» class=6.094;
» disp(sprintf("Hello %g", class))

» The format is C-syntax

e A variable can be given a value explicitly
» a = 10

» shows up in workspace!

e Or as a function of explicit values and existing variables
» ¢ = 1.3*45-2*a

e To suppress output, end the line with a semicolon
» cooldude = 13/3;

e Like other programming languages, arrays are an
important part of MATLAB

e Two types of arrays

(2) cell array of objects (more advanced data structure)

MATLAB makes vectors easy!
That’s its power!

Row Vectors

e Row vector: comma or space separated values between
brackets

» row = [1 2 5.4 -6.6];
» row = [1, 2, 5.4, -6.6];

e Command window: > row=[1 2 5.4 -6.6]

1.0000 Z2.0000 5.4000 —&.6000

e Workspace:

T

Narme Size Bytes Class

HH row 124 32 |double array

Courtesy of The MathWorks, Inc. Used with permission.

Column Vectors

e Column vector: semicolon separated values between
brackets

» column = [4;2;7;4];

e Command window: »>> column=[4;2;7;4]

column =

= =1 M e

e Workspace:

TILE s

Narmes Size BEvtes Class

Hf column ‘ﬂxl ‘ BE‘double array

Courtesy of The MathWorks, Inc. Used with permission.

Matrices

Make matrices like vectors
Element by element/7 a :{
» a= [1 2;3 4];

By concatenating vectors or matrices (dimension matters)

»

»

»

»

»

»

a
b
C

@D

[1 21;:—— D
[3 4]'—»-

[5:61: \.

[a;b];—
[d c];
[[e e]:[a b a]];—

1 2
3 4

e Use save to save variables to a file
» save myfile a b

» saves variables a and b to the file myfile.mat
» myfile.mat file in the current directory

» Default working directory is
» \MATLAB\work

» Create own folder and change working directory to it
» MyDocuments\6.094\dayl

e Use clear to remove variables from environment
» clear a b

» look at workspace, the variables a and b are gone

e Use load to load variable bindings into the environment
» load myfile

» look at workspace, the variables a and b are back

e (Can do the same for entire environment
» save myenv; clear all; load myenv;

e Do the following 5 things:
» Create the variable r as a row vector with values 1 4
7 10 13
» Create the variable c as a column vector with values
131074 1

» Save these two variables to file varEx
» clear the workspace
» load the two variables you just created

» r=[1 4 7 10 13];

» c=[13; 10; 7; 4; 1];
» save varkEx r c

» clear r c

» load varEx

(3) Manipulating Variables

Basic Scalar Operations

Arithmetic operations (+,-,*,/)
» 7/45

» (I+1)*(2+1)

» 1 /70

» 0O/ 0

Exponentiation ()
» 412
» (B+4*JH)N2

Complicated expressions, use parentheses
» ((2+3)*3)7"0.1

Multiplication is NOT implicit given parentheses
» 3(1+0.7) gives an error

To clear cluttered command window
» Clc

e« MATLAB has an enormous library of built-in functions

e Call using parentheses — passing parameter to function
» sqrt(2)
» 1og(2), 109g10(0.23)
» cos(1.2), atan(-.8)
» exp(2+4*1)
» round(1.4), floor(3.3), ceil(4.23)
» angle(1); abs(1l+1);

To get info on how to use a function:
» help sin

» Help contains related functions

To get a nicer version of help with examples and easy-to-
read descriptions:

» doc sin

To search for a function by specifying keywords:
» doc + Search tab

» lookfor hyperbolic

\

One-word description of what
you're looking for

Exercise: Scalars

 Verify that e™(i*x) = cos(x) + i*sin(x) for a few values of x.

» pi1/3;
exp(1*x)
cos(x)+ 1*sin(x)

»

»

QIJUSDX
o |l

»

e You can tell the difference between a row and a column
vector by:

» Looking in the workspace
» Displaying the variable in the command window
» Using the size function

>»> glze{row) >» gize {column)

e To get a vector's length, use the length function

>» length{row) >»> length {column}

ans = ars =

The transpose operators turns a column vector into a row
vector and vice versa

»a=1][12 3 4]
» transpose(a)

Can use dot-apostrophe as short-cut
» a."

The apostrophe gives the Hermitian-transpose, i.e.
transposes and conjugates all complex numbers

» a = [1+] 2+3*j]
» a”
» a."

For vectors of real numbers ." and ' give same result

Addition and subtraction are element-wise; sizes must
match (unless one is a scalar):

[12 3 32 -11] 12113 9
+[2 11 -30 32] o il
' 10| [13|| 23

=[14 14 2 21

0 33 -33

The following would give an error
» ¢ = row + column

Use the transpose to make sizes compatible
» ¢ = row” + column

» ¢ = row + column”

Can sum up or multiply elements of vector
» s=sum(row) ;

» p=prod(row);

e All the functions that work on scalars also work on vectors
» €t = [1 2 3];
» T = exp(t);
» Is the same as
» T = [exp(1l) exp(2) exp(3)];

e |If in doubt, check a function’s help file to see if it handles
vectors elementwise

e Operators () have two modes of operation
» element-wise
» standard

Operators: element-wise

e To do element-wise operations, use the dot. BOTH
dimensions must match (unless one is scalar)!

» a=[1 2 3];b=[4;2;1];
» a.*b, a./b, a.~b 2> all errors
» a.*b”, a./b”, a.~(b*>) > all valid

4 1 1 1] (12 3] [1 2 3
[1 2 3].*|2|=ERROR 2 2 2|*1 2 3|=|2 4 6
1 3 3 3/ (1 23] (369
11 47 [4] 3x3*3x3=3x3
21 *12|=|4
3 1 3
3_><i.*3:><_1=1_’>><_1 {1 2}."2:{12 22}
3 4 3?47

Can be any dimension

< Multiplication can be done in a standard way or element-wise

e Standard multiplication (*) is either a dot-product or an outer-
product
» Remember from linear algebra: inner dimensions must MATCH!!

e Standard exponentiation () implicitly uses
» Can only be done on square matrices or scalars

e Left and right division (/ \) is same as multiplying by inverse
» Our recommendation: just multiply by inverse (more on this

later)
(4] 1 2 1 2711 2 11 1][1 2 3] [3 6 9]
3]*| 2|=11 {3 4} 2:{3 4} {3 4} 2 2 2/*11 2 3|=|6 12 18
1] Must be square to do powers 3 3 3] |1 2 3] |9 18 27]
1x3*3x1=1x1 3x3*3x3=3%x3

Find the inner product between [1 2 3] and [3 5 4]
» a=[1 2 3]*[3 5 4]

Multiply the same two vectors element-wise
» b=[1 2 3].*[3 5 4]

Calculate the natural log of each element of the resulting
vector

» c=log(b)

Automatic Initialization

e |nitialize a vector of ones, zeros, or random numbers
» o=ones(1,10)
» row vector with 10 elements, all 1
» z=zeros(23,1)
» column vector with 23 elements, all O
» r=rand(1,45)
» row vector with 45 elements (uniform [0,1])
» n=nan(1,69)

» row vector of NaNs (useful for representing uninitialized
variables)

The general function call is:
var=zeros(M,N);

N

Number of rows Number of columns

e To initialize a linear vector of values use linspace
» a=linspace(0,10,5)
» starts at O, ends at 10 (inclusive), 5 values

e (Can also use colon operator (:)
» b=0:2:10
» starts at O, increments by 2, and ends at or before 10
» increment can be decimal or negative
» c=1:5
» If increment isn’t specified, default is 1

e To initialize logarithmically spaced values use logspace
» similar to linspace

Exercise: Vector Functions

e Make a vector that has 10,000 samples of
f(xX) = en{-x}*cos(x), for x between O and 10.

» X = linspace(0,10,10000);
» F = exp(-x).*cos(x);

MATLAB indexing starts with 1, not O

»We will not respond to any emails where this is the
problem.

a(n) returns the nt" element

[13 5 9 10]
7 N N

a(l) a@2) a(3) a(4)

The index argument can be a vector. In this case, each
element is looked up individually, and returned as a vector
of the same size as the index vector.

» x=[12 13 5 8];
» a=x(2:3);
» b=x(1l:end-1);

a=[13 5];
b=[12 13 5];

v

v

Matrices can be indexed in two ways
» using subscripts (row and column)
» using linear indices (as if matrix is a vector)

Matrix indexing: subscripts or linear indices

~

A\

b(1,1)—|14 3B |— b(1,2)
b(2,1)—| 9 8 |« Db(2,2)

b(1) ——[14 33}— b(3)

b(2)—| 9 8

«— b(4)

Picking submatrices

» A = rand(b)

» A(1:3,1:2)

» A(J1 5 3], [1 4))

The index argument can be a matrix. In this case, each
element is looked up individually, and returned as a matrix
of the same size as the index matrix.

» a:[_]_ 10 3 _2]; X :|:—1 10 —2:|
» b=a([1 2 4;3 4 2]); 3 -2 10

To select rows or columns of a matrix, use the :

12 5
C =
-2 13

» d=c(1,:); » d=[12 5];
» e=c(:,2); » €e=[5;13];
» c(2,:)=[3 6]; %replaces second row of c

MATLAB contains functions to help you find desired values
within a vector or matrix

» vec = [1 5 3 9 7]
To get the minimum value and its index:
» [minVal,minlnd] = min(vec);
To get the maximum value and its index:
» [maxVal ,maxInd] = max(vec);
To find any the indices of specific values or ranges
» Ind = find(vec == 9);
» Ind = find(vec > 2 & vec < 6);
» Tind expressions can be very complex, more on this later

To convert between subscripts and indices, use ind2sub,
and sub2ind. Look up help to see how to use them.

e Evaluate a sine wave at 1,000 points between 0 and 2*pi.

e \What's the value at
» Index 55
» Indices 100 through 110

e Find the index of
» the minimum value,
» the maximum value, and
» values between -0.001 and 0.001

» X = linspace(0,2*pi1,1000);

» y=sin(x);

» y(55)

» y(100:110)

» [minVal ,minInd]=min(y)

» [maxVal ,maxInd]=max(y)

» 1nds=Find(y>-0.001 & y<0.001)

4

Make a 3x100 matrix of zeros, and a vector x that has 100 values
between O and 10

» mat=zeros(3,100);
» x=linspace(0,10,100);

Replace the first row of the matrix with cos(x)
» mat(l, :)=cos(x);

Replace the second row of the matrix with log((x+2)"™2)
» mat(2, :)=log((x+2).72);

Replace the third row of the matrix with a random vector of the
correct size

» mat(3, :)=rand(1,100);
Use the sum function to compute row and column sums of mat
(see help)

» rs = sum(mat,2);

» ¢cs = sum(mat); % default dimension i1s 1

(4) Basic Plotting

Plotting Vectors

e Example
» Xx=linspace(0,4*pi,10);
» y=sin(x);

e Plot values against their index

» plot(y);
e Usually we want to plot y versus x

» plot(X,y);

What does plot do?

- plot generates dots at each (X,y) pair and then connects the dots
with a line

e To make plot of a function look smoother, evaluate at more points
» x=linspace(0,4*pi1,1000);
» plot(x,sin(X));

e X and y vectors must be same size or else you’ll get an error
» plot([1 2], [1 2 3])

> error!!

1000 x values:

0.6+ 4 0.6

10 x values:

0.4 q 0.4

0.2+ B 0.2k

0.2} 1 0.2}
0.4 1 0.4
0.6f 1 0.6f

-0.8 B -0.8

Can change the line color, marker style, and line style by
adding a string argument

» plot(X,y,’k.-7);

color marker line-style

Can plot without connecting the dots by omitting line style
argument

» plot(X,y,”.”)

Look at for a full list of colors, markers, and
linestyles

Much more on this in Lecture 2, for now some simple
commands

To plot two lines on the same graph
» hold on;

To plot on a new figure
» Figure;

» plot(X,y);

Play with the figure GUI to learn more
» add axis labels
> add a title
» add a grid
» zoom in/zoom out

Plot f(x) = e”™x*cos(x) on the interval x = [0 10]. Use a red
solid line with a suitable number of points to get a good
resolution.

» Xx=0:.01:10;
» plot(Xx,exp(X).*cos(x),’r’);

End of Lecture 1

(1) Getting Started

(2) Making Variables

(3) Manipulating Variables
(4) Basic Plotting

	6.094�Introduction to Programming in MATLAB®
	Course Layout
	Course Layout
	Outline
	Getting Started
	Customization
	MATLAB Basics
	Conversing with MATLAB
	Outline
	Variable Types
	Naming variables
	Hello World
	Scalars
	Arrays
	Row Vectors
	Column Vectors
	Matrices
	save/clear/load
	Exercise: Variables
	Outline
	Basic Scalar Operations
	Built-in Functions
	Help/Docs
	Exercise: Scalars
	size & length
	transpose
	Addition and Subtraction
	Element-Wise Functions
	Operators: element-wise
	Operators: standard
	Exercise: Vector Operations
	Automatic Initialization
	Automatic Initialization
	Exercise: Vector Functions
	Vector Indexing
	Matrix Indexing
	Advanced Indexing 1
	Advanced Indexing 2
	Exercise: Vector Indexing
	BONUS Exercise: Matrices
	Outline
	Plotting Vectors
	What does plot do?
	Plot Options
	Other Useful plot Commands
	Exercise: Plotting
	End of Lecture 1

