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6.094: Introduction to MATLAB 

Homework #2: Visualization and Programming 

What to turn in: Please turn in a document (preferably Word or PDF) of your work including code and plots. 
Be sure to suppress intermediate output. Assume you should provide final output unless told otherwise. Note 
that the last two problems are optional! 

Exercise 1. Logical Masks 

1. Do Problem 8 in Chapter 4 on page 242 of Palm. Do not use a loop. Do it in two different ways, in the 
first use a relational operator as a mask and the sum function. In the second, use the find function. 

2. Do Problem 9 in Chapter 4 on page 242 of Palm. Do it in two different ways too, using a logical mask 
and using the find function. 

Exercise 2. Conditional Operators and Functions 

Do Problem 17, part(b) in Chapter 4 on page 244. Remember to thoroughly test your function. 

Exercise 3. To Loop or not to Loop 

Do Problem 20 in Chapter 4 on page 246 of Palm. Evaluate to a precision 1/1000 second. Use the tic/toc 
commands to benchmark how long each of the two methods take. Which one is faster? Be sure to suppress 
output until after you write “toc.” Printing or plotting to the screen takes the most time of all! 

Exercise 4. Brute-force Optimization 

Do Problem 25 in Chapter 4 on page 248-249. 

Exercise 5. One-Dimensional Plotting 

Do Problem 18 part (c) in Chapter 5 on page 344 of Palm. Overlay all of the trajectories in different colors 
and/or linestyles on the same plot. The plot should be clearly labelled and have a legend. We should be able 
to see the apex of the trajectory, in addition to the point it hits the ground. Further, assuming the y = 0 is 
the ground, we should not be able to see the trajectory for negative y. 

Exercise 6. Parametric Curves 

1. The limaçon is a polar curve of the form 

r = b + a cos θ (1) 

If b ≥ 2a, the limaçon is convex. If 2a > b > a, the limaçon is dimpled. If b = a, the limaçon 
degenerates to a cardioid. If b < a, the limaçon has an inner loop. Write a script that plots the 
limaçon for the four different regimes, clearly labelling which values of a and b were used. You will 
find the function polar useful. 
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2. Lissajous curves are a family of curves described by the parametric equations, 

x(t) = a sin(ωt + δ) (2) 

y(t) = b sin t (3) 

Fix a = b = 1 and δ = 0. Plot the curve for various values of ω to help answer the questions below. 
You may want to write a script that will generate your plots. When increasing the range of t, make 
sure you extend it enough to give the function a chance to close on itself. 

(a) Pick ω as an integer and plot the Lissajous curve as t varies over the range 0 < t ≤ 2π. How 
does the value of ω control what the curve looks like? Increase the range of t, what happens (e.g. 
0 < t ≤ 100π) ? 

(b) Now pick ω as a rational number (e.g. ω = 2/3) and plot the Lissajous curve as t varies over the 
range 0 < t ≤ 2π. Increase the range of t, what happens? Does the curve eventually close on 
itself, if we make t vary over a large enough range? 

(c) Now pick ω as an irrational number (e.g. ω = e, π, 
√

3) and plot the Lissajous curve as t varies 
over the range 0 < t ≤ 2π. Increase the range of t, what happens? Does the curve eventually 
close on itself, if we make t vary over a large enough range? 

Exercise 7. 3-D Curve and Surface Plotting 

1. Make a surface plot of the function f(x) =
� 

2 − x2 − y2 on the range [−1, 1] in both x and y. Sample 
this range finely enough to get a smooth shape, and use flat shading with a hot colormap. 

  2. Make a surface plot of the function f(x) = xy sin 
� 

x
� 

cos 
� 

y

y x

� 

on the range [−10, 10] in both x and  

y. Sample this range finely (0.1 should be good enough) and use interpolated shading. Change the 
colormap, add a colorbar, and rotate the plot to a new orientation using MATLAB’s plot GUI. 

Exercise 8. Vector Field Visualization (Optional) 

The electric potential vield V at a point, due to four charged particled is given by, 

1 
� 

q1 q2 q3 q3
V = + + + (4) 

4πǫ0 r1 r2 r3 r3 

� 

where qi is the charge of particle i in Coulombs (C), and ri are the distances of the charges form the point 
(in meters), and ǫ0 is the permittivity of free space, whose value is 

 ǫ 12 2 2
0 = 8.854× 10− C /N · m (5) 

Suppose the charges are q = 2 × 10−10 C, q = −4 × 10−10 C, q = 6 × 10−10 
1 2 3 C, and q4 = −8 × 10−10 C. 

Their respective locations in the xy plane are (.3, 0), (−.3, 0), (0, .3), and (0,−.3). 

1. Plot the electric potential field on a 3D surface plot with V plotted on the z-axis ove the ranges 
−0.25 ≤ x ≤ 0.25 and −0.25 ≤ y ≤ 0.25. Create the plot using the surf function. 

2. Given the electric potential, we can compute the electric field using the expression, 

E~ = −∇V (6) 

where the ∇ operator represents the gradient operation. Find the E-field on a grid of points over the 
same range as in (a). Approximate the gradient numerically using the grad function. In MATLAB 
2008 grad has been superceded by gradient. Note that you will have two matrices to contain the 

~ ~E-field, one that contains Ex, the field in the x-direction, and another Ey, the field in the y-direction. 
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3. Plot the vector field using quiver. 

4. Plot the E-field lies using streamslice. 

5. Overlay 100 isocontours of the electric potential V on top of the plot of the streamlines. Use contour. 
What do you notice about the potential isocontours and the steamlines from the previous part? 

Exercise 9. The Logistic Map (Optional) 

In this problem you will explore the behavior of a famous iterated function called the logistic map. It will 
introduce you to the art of numerical simulation, for which MATLAB is known for. In addition, you will see 
how the same data can be visualized in many different ways using MATLAB. The following description is 
adapted from Wikipedia at http://en.wikipedia.org/wiki/Logistic map. 
The logistic map is a polynomial mapping, often cited as an archetypal example of how complex, chaotic 
behaviour can arise from very simple non-linear dynamical equations. The map was popularized in a seminal 
1976 paper by the biologist Robert May. The logistic map models the population of a species in the presence 
of limiting factors such as food supply. It has two causal effects: � reproduction means the population will increase at a rate proportional to the current population � starvation means the population will decrease at a rate proportional to the value obtained by taking 

the theoretical ”carrying capacity” of the environment less the current population. 

Mathematically this can be written as, 

xn+1 = rxn(1 − xn) (7) 

where: � xn is a number between zero and one, and represents the population at year n, and hence x0 represents 
the initial population (at year 0) � r is a positive number, and represents a combined rate for reproduction and starvation. 

1. Write a function xvec = logistic(x0,r,N) that takes in three parameters, x0, the initial condition 
of the population, r, the combined growth rate, and N, the number of years for which to evaluate the 
population size. The function should return a vector, xvec, of length N that contains the evolution of 
the population over N years, i.e. the first value should be x0 and last value should be xN−1. This is 
called the ’orbit’ of x0. 

2. Plot the orbit versus year for various values of 0 < r < 4. You will find that there are four different 
steady-state regimes. The first, for 0 < r < 1, the orbit, no matter what the initial condition, dies down 
to zero. The second, for 1 < r < 3, the orbit settles down to a single steady-state value. The third, 
for 3 < r < 3.57, the orbit settles down to a periodic steady-state (of period 2, 4, 8, as r increases). 
And the last, for 3.57 < r < 4, the orbit bounces around seemingly randomly among various values, 
never settling down into a pattern. This type of behavior is called ”chaos”. For r > 4, the population 
diverges. Find one example of each of the four regimes and plot them on the same figure using subplot. 

3. Write a function firstreturn(xvec, r) that takes in two parameters xvec, an orbit, and r, the value 
of r that generated it. The function should make a two-dimensional scatter-plot of xn versus xn+1 the 
form in Figure 1. 
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Figure 1: Example First-Return Map 

4. Plot the first-return map for the various examples you tried in part (b). In addition, plot the first-
return map for the chaotic orbit generated by r = 3.99. Note that when plotting the first-return map, 
you usually do not want to include the ’transient’ values near the beginning of an orbit, before it 
settles into a steady-state pattern. Also, note how that, even though the orbit seems to be completely 
random, the first-return map shows a quadratic structure to the iteration. 

5. Write a script bifurcation.m that makes a plot of the steady-state of orbits versus r. You can do 
this by iterating an orbit for N = 250 iteration and then plotting the last M = 30 values (which we 
consider to be steady-state) versus the value of r used. This is called a bifurcation diagram. The 
resulting plot will look something like Figure 5, where we have plotted the bifurcation diagram of the 
logistic map for 0 < r < 3.57. 
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Figure 2: Example of a Bifurcation Diagram 

Plot the bifurcation diagram of the logistic map for 1000 equally spaced points in the range 2.4 < r < 
4.0. It will show the different regimes for the logistic map, i.e. you should be able to clearly see how 
the regimes change from one steady-state to periodic steady-states that double in period and finally 
to a chaotic pattern. 
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