
MIT OpenCourseWare
http://ocw.mit.edu

6.094 Introduction to MATLAB®
January (IAP) 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.094
Introduction to Programming in MATLAB®

Lecture 3 : Solving Equations and Curve Fitting

Sourav Dey
Danilo Šćepanović

Ankit Patel
Patrick Ho

IAP 2009

Outline

(1) Linear Algebra
(2) Polynomials
(3) Optimization
(4) Differentiation/Integration
(5) Differential Equations

Systems of Linear Equations

• Given a system of linear equations
x+2y-3z=5
-3x-y+z=-8
x-y+z=0

• Construct matrices so the system is described by Ax=b
» A=[1 2 -3;-3 -1 1;1 -1 1];
» b=[5;-8;0];

• And solve with a single line of code!
» x=A\b;

x is a 3x1 vector containing the values of x, y, and z

• The \ will work with square or rectangular systems.
• Gives least squares solution for rectangular systems. Solution

depends on whether the system is over or underdetermined.

MATLAB makes linear
algebra fun!

More Linear Algebra

• Given a matrix
» mat=[1 2 -3;-3 -1 1;1 -1 1];

• Calculate the rank of a matrix
» r=rank(mat);

the number of linearly independent rows or columns

• Calculate the determinant
» d=det(mat);

mat must be square
if determinant is nonzero, matrix is invertible

• Get the matrix inverse
» E=inv(mat);

if an equation is of the form A*x=b with A a square matrix,
x=A\b is the same as x=inv(A)*b

Matrix Decompositions

• MATLAB has built-in matrix decomposition methods

• The most common ones are
» [V,D]=eig(X)

Eigenvalue decomposition
» [U,S,V]=svd(X)

Singular value decomposition
» [Q,R]=qr(X)

QR decomposition

Exercise: Linear Algebra

• Solve the following systems of equations:

System 1:
x+4y=34
-3x+y=2

System 2:
2x-2y=4
-x+y=3
3x+4y = 2

Exercise: Linear Algebra

• Solve the following systems of equations:

System 1:
x+4y=34
-3x+y=2

System 2:
2x-2y=4
-x+y=3
3x+4y = 2

» A=[1 4;-3 1];
» b=[34;2];
» rank(A)
» x=inv(A)*b;

» A=[2 -2;-1 1;3 4];
» b=[4;3;2];
» rank(A)

rectangular matrix
» x1=A\b;

gives least squares solution
» A*x1

Outline

(1) Linear Algebra
(2) Polynomials
(3) Optimization
(4) Differentiation/Integration
(5) Differential Equations

Polynomials

• Many functions can be well described by a high-order
polynomial

• MATLAB represents a polynomials by a vector of coefficients
if vector P describes a polynomial

– ax3+bx2+cx+d

• P=[1 0 -2] represents the polynomial x2-2

• P=[2 0 0 0] represents the polynomial 2x3

P(1) P(2) P(3) P(4)

Polynomial Operations

• P is a vector of length N+1 describing an N-th order polynomial
• To get the roots of a polynomial

» r=roots(P)
r is a vector of length N

• Can also get the polynomial from the roots
» P=poly(r)

r is a vector length N

• To evaluate a polynomial at a point
» y0=polyval(P,x0)

x0 is a single value; y0 is a single value

• To evaluate a polynomial at many points
» y=polyval(P,x)

x is a vector; y is a vector of the same size

Polynomial Fitting

• MATLAB makes it very easy to fit polynomials to data

• Given data vectors X=[-1 0 2] and Y=[0 -1 3]
» p2=polyfit(X,Y,2);

finds the best second order polynomial that fits the points
(-1,0),(0,-1), and (2,3)
see help polyfit for more information

» plot(X,Y,’o’, ‘MarkerSize’, 10);
» hold on;
» x = linspace(-2,2,1000);
» plot(x,polyval(p2,x), ‘r--’);

Exercise: Polynomial Fitting

• Evaluate x^2 over x=-4:0.1:4 and save it as y.

• Add random noise to these samples. Use randn. Plot the
noisy signal with . markers

• fit a 2nd degree polynomial to the noisy data

• plot the fitted polynomial on the same plot, using the same
x values and a red line

Exercise: Polynomial Fitting

• Evaluate x^2 over x=-4:0.1:4 and save it as y.
» x=-4:0.1:4;
» y=x.^2;

• Add random noise to these samples. Use randn. Plot the
noisy signal with . markers
» y=y+randn(size(y));
» plot(x,y,’.’);

• fit a 2nd degree polynomial to the noisy data
» [p]=polyfit(x,y,2);

• plot the fitted polynomial on the same plot, using the same
x values and a red line
» hold on;
» plot(x,polyval(p,x),’r’)

Outline

(1) Linear Algebra
(2) Polynomials
(3) Optimization
(4) Differentiation/Integration
(5) Differential Equations

Nonlinear Root Finding

• Many real-world problems require us to solve f(x)=0
• Can use fzero to calculate roots for any arbitrary function

• fzero needs a function passed to it.
• We will see this more and more as we delve into solving

equations.

• Make a separate function file
» x=fzero('myfun',1)
» x=fzero(@myfun,1)

1 specifies a
point close to
the root

Courtesy of The MathWorks, Inc. Used with permission.

Minimizing a Function

• fminbnd: minimizing a function over a bounded interval
» x=fminbnd('myfun',-1,2);

myfun takes a scalar input and returns a scalar output
myfun(x) will be the minimum of myfun for -1≤x ≤ 2

• fminsearch: unconstrained interval
» x=fminsearch('myfun',.5)

finds the local minimum of myfun starting at x=0.5

Anonymous Functions

• You do not have to make a separate function file

• Instead, you can make an anonymous function
» x=fzero(@(x)(cos(exp(x))+x^2-1), 1);

» x=fminbnd(@(x) (cos(exp(x))+x^2-1),-1,2);

input function to evaluate

Optimization Toolbox

• If you are familiar with optimization methods, use the
optimization toolbox

• Useful for larger, more structured optimization problems

• Sample functions (see help for more info)
» linprog

linear programming using interior point methods
» quadprog

quadratic programming solver
» fmincon

constrained nonlinear optimization

Exercise: Min-Finding

Find the minimum of the function f(x) =
cos(4*x).*sin(10*x).*exp(-abs(x)) over the range –pi to
pi. Use fminbnd. Is your answer really the minimum
over this range?

Exercise: Min-Finding

Find the minimum of the function f(x) =
cos(4*x).*sin(10*x).*exp(-abs(x)) over the range –pi to
pi. Use fminbnd. Is your answer really the minimum
over this range?

function y = myFun(x)
y=cos(4*x).*sin(10*x).*exp(-abs(x));

fminbnd(‘myFun’, -pi, pi);

Outline

(1) Linear Algebra
(2) Polynomials
(3) Optimization
(4) Differentiation/Integration
(5) Differential Equations

Numerical Differentiation

• MATLAB can 'differentiate' numerically
» x=0:0.01:2*pi;
» y=sin(x);
» dydx=diff(y)./diff(x);

diff computes the first difference

• Can also operate on matrices
» mat=[1 3 5;4 8 6];
» dm=diff(mat,1,2)

first difference of mat along the 2nd dimension, dm=[2 2;4 -2]
see help for more details

• 2D gradient
» [dx,dy]=gradient(mat);

0 100 200 300 400 500 600 700
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Numerical Integration

• MATLAB contains common integration methods

• Adaptive Simpson's quadrature (input is a function)
» q=quad('derivFun',0,10);

q is the integral of the function derivFun from 0 to 10
» q2=quad(@sin,0,pi)

q2 is the integral of sin from 0 to pi

• Trapezoidal rule (input is a vector)
» x=0:0.01:pi;
» z=trapz(x,sin(x));

z is the integral of sin(x) from 0 to pi
» z2=trapz(x,sqrt(exp(x))./x)

z2 is the integral of from 0 to pi
xe x

Outline

(1) Linear Algebra
(2) Polynomials
(3) Optimization
(4) Differentiation/Integration
(5) Differential Equations

ODE Solvers: Method

• Given a differential equation, the solution can be found by
integration:

Evaluate the derivative at a point and approximate by straight line
Errors accumulate!
Variable timestep can decrease the number of iterations

ODE Solvers: MATLAB

• MATLAB contains implementations of common ODE solvers

• Using the correct ODE solver can save you lots of time and
give more accurate results
» ode23

Low-order solver. Use when integrating over small intervals
or when accuracy is less important than speed

» ode45
High order (Runge-Kutta) solver. High accuracy and
reasonable speed. Most commonly used.

» ode15s
Stiff ODE solver (Gear's algorithm), use when the diff eq's
have time constants that vary by orders of magnitude

ODE Solvers: Standard Syntax

• To use standard options and variable time step
» [t,y]=ode45('myODE',[0,10],[1;0])

• Inputs:
ODE function name (or anonymous function). This function
takes inputs (t,y), and returns dy/dt
Time interval: 2-element vector specifying initial and final
time
Initial conditions: column vector with an initial condition for
each ODE. This is the first input to the ODE function

• Outputs:
t contains the time points
y contains the corresponding values of the integrated fcn.

ODE integrator:
23, 45, 15s

ODE function Time range

Initial conditions

ODE Function

• The ODE function must return the value of the derivative at
a given time and function value

• Example: chemical reaction
Two equations

ODE file:

– y has [A;B]
– dydt has

[dA/dt;dB/dt]

A B

10

50
10 50

10 50

dA A B
dt
dB A B
dt

= − +

= −

Courtesy of The MathWorks, Inc.
Used with permission.

ODE Function: viewing results

• To solve and plot the ODEs on the previous slide:
» [t,y]=ode45('chem',[0 0.5],[0 1]);

assumes that only chemical B exists initially
» plot(t,y(:,1),'k','LineWidth',1.5);
» hold on;
» plot(t,y(:,2),'r','LineWidth',1.5);
» legend('A','B');
» xlabel('Time (s)');
» ylabel('Amount of chemical (g)');
» title('Chem reaction');

ODE Function: viewing results

• The code on the previous slide produces this figure

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

A
m

ou
nt

 o
f c

he
m

ic
al

 (g
)

Chem reaction

A
B

Higher Order Equations

• Must make into a system of first-order equations to use
ODE solvers

• Nonlinear is OK!
• Pendulum example:

()

()

()

0g sin
L

g sin
L

let
g sin
L

x

dx
dt

θ θ

θ θ

θ γ

γ θ

θ
γ

θ
γ

+ =

= −

=

= −

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

&&

&&

&

&

v

v &

&

Courtesy of The MathWorks, Inc. Used with permission.

Plotting the Output

• We can solve for the position and velocity of the pendulum:
» [t,x]=ode45('pendulum',[0 10],[0.9*pi 0]);

assume pendulum is almost vertical (at top)
» plot(t,x(:,1));
» hold on;
» plot(t,x(:,2),'r');
» legend('Position','Velocity');

0 1 2 3 4 5 6 7 8 9 10
-8

-6

-4

-2

0

2

4

6

8
Position
Velocity

Position in terms of
angle (rad)

Velocity (m/s)

Plotting the Output

• Or we can plot in the phase plane:
» plot(x(:,1),x(:,2));
» xlabel('Position');
» yLabel('Velocity');

• The phase plane is just a plot of one variable versus the
other:

-3 -2 -1 0 1 2 3
-8

-6

-4

-2

0

2

4

6

8

Position

V
el

oc
ity

Velocity is greatest
when theta=0

Velocity=0 when
theta is the greatest

ODE Solvers: Custom Options

• MATLAB's ODE solvers use a variable timestep
• Sometimes a fixed timestep is desirable

» [t,y]=ode45('chem',[0:0.001:0.5],[0 1]);
Specify the timestep by giving a vector of times
The function will be evaluated at the specified points
Fixed timestep is usually slower (if timestep is small) and
possibly inaccurate (if timestep is too large)

• You can customize the error tolerances using odeset
» options=odeset('RelTol',1e-6,'AbsTol',1e-10);
» [t,y]=ode45('chem',[0 0.5],[0 1],options);

This guarantees that the error at each step is less than
RelTol times the value at that step, and less than AbsTol
Decreasing error tolerance can considerably slow the solver
See doc odeset for a list of options you can customize

Exercise: ODE

• Use ODE45 to solve this differential equation on the range
t=[0 10], with initial condition y(0) = 10: dy/dt=-t*y/10.
Plot the result.

Exercise: ODE

• Use ODE45 to solve this differential equation on the range
t=[0 10], with initial condition y(0) = 10: dy/dt=-t*y/10.
Plot the result.

» function dydt=odefun(t,y)
» dydt=-t*y/10;

» [t,y]=ode45(‘odefun’,[0 10],10);
» plot(t,y);

End of Lecture 3

(1) Linear Algebra
(2) Polynomials
(3) Optimization
(4) Differentiation/Integration
(5) Differential Equations

We're almost done!

Issues with ODEs

• Stability and accuracy
if step size is too large, solutions might blow up
if step size is too small, requires a long time to solve
use odeset to control errors

– decrease error tolerances to get more accurate
results

– increase error tolerances to speed up computation
(beware of instability!)

• Main thing to remember about ODEs
Pick the most appropriate solver for your problem
If ode45 is taking too long, try ode15s

	6.094�Introduction to Programming in MATLAB®
	Outline
	Systems of Linear Equations
	More Linear Algebra
	Matrix Decompositions
	Exercise: Linear Algebra
	Exercise: Linear Algebra
	Outline
	Polynomials
	Polynomial Operations
	Polynomial Fitting
	Exercise: Polynomial Fitting
	Exercise: Polynomial Fitting
	Outline
	Nonlinear Root Finding
	Minimizing a Function
	Anonymous Functions
	Optimization Toolbox
	Exercise: Min-Finding
	Exercise: Min-Finding
	Outline
	Numerical Differentiation
	Numerical Integration
	Outline
	ODE Solvers: Method
	ODE Solvers: MATLAB
	ODE Solvers: Standard Syntax
	ODE Function
	ODE Function: viewing results
	ODE Function: viewing results
	Higher Order Equations
	Plotting the Output
	Plotting the Output
	ODE Solvers: Custom Options
	Exercise: ODE
	Exercise: ODE
	End of Lecture 3
	Issues with ODEs

