
MIT OpenCourseWare
http://ocw.mit.edu

6.094 Introduction to MATLAB®
January (IAP) 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.094
Introduction to Programming in MATLAB®

Lecture 2: Visualization and Programming

Sourav Dey
Danilo Šćepanović

Ankit Patel
Patrick Ho

IAP 2009

Outline

(1) Plotting Continued
(2) Scripts
(3) Functions
(4) Flow Control

Cartesian Plots

• We have already seen the plot function
» x=-pi:pi/100:pi;
» y=cos(4*x).*sin(10*x).*exp(-abs(x));
» plot(x,y,'k-');

• The same syntax applies for semilog and loglog plots
» semilogx(x,y,'k');
» semilogy(y,'r.-');
» loglog(x,y);

• For example:
» x=0:100;
» semilogy(x,exp(x),'k.-');

0 10 20 30 40 50 60 70 80 90 100
100

1010

1020

1030

1040

1050

Playing with the Plot

to select lines
and delete or
change
properties

to zoom in/out
to slide the plot
around

to see all plot
tools at once

Courtesy of The MathWorks, Inc. Used with permission.

Line and Marker Options

• Everything on a line can be customized
» plot(x,y,'--rs','LineWidth',2,...

'MarkerEdgeColor','k',...
'MarkerFaceColor','g',...
'MarkerSize',10)

• See doc line for a full list of
properties that can be specified

-4 -3 -2 -1 0 1 2 3 4
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Labels

• Last time we saw how to add titles and labels using the GUI. Can
also do it command-line:
» title('Stress-Strain');
» xlabel('Force (N)');

• For multiple lines, add a legend entry for each line
» legend('Steel','Aluminum','Tungsten');

• Can specify font and size for the text
» ylabel('Distance (m)','FontSize',14,...

'FontName','Helvetica');
use ... to break long commands across multiple lines

• To put parameter values into labels, need to use num2str and
concatenate:
» str = [‘Strength of ' num2str(d) 'cm diameter rod'];
» title(str)

Axis

• A grid makes it easier to read values
» grid on

• xlim sets only the x axis limits
» xlim([-pi pi]);

• ylim sets only the y axis limits
» ylim([-1 1]);

• To specify both at once, use axis:
» axis([-pi pi -1 1]);

sets the x axis limits between -pi and pi and the y axis limits
between -1 and 1

• Can specify tickmarks
» set(gca,'XTick', linspace(-pi,pi,3))

see doc axes for a list of properties you can set this way
more on advanced figure customization in lecture 4

Axis Modes

• Built-in axis modes

» axis square
makes the current axis look like a box

» axis tight
fits axes to data

» axis equal
makes x and y scales the same

» axis xy
puts the origin in the bottom left corner (default)

» axis ij
puts the origin in the top left corner (for viewing matrices)

Multiple Plots in one Figure

• Use the figure command to open a new figure
» figure

• or activate an open figure
» figure(1)

• To have multiple axes in one figure
» subplot(2,3,1) or subplot(231)

makes a figure with 2 rows and three columns of axes, and
activates the first axis for plotting
each axis can have labels, a legend, and a title

» subplot(2,3,4:6)
activating a range of axes fuses them into one

• To close existing figures
» close([1 3])

closes figures 1 and 3
» close all

closes all figures (useful in scripts/functions)

Copy/Paste Figures

• Figures can be pasted into other apps (word, ppt, etc)
• Edit copy options figure copy template

Change font sizes, line properties; presets for word and ppt

• Edit copy figure to copy figure
• Paste into document of interest

Courtesy of The MathWorks, Inc. Used with permission.

Saving Figures

• Figures can be saved in many formats. The common ones
are:

.fig preserves all
information

.bmp uncompressed
image

.eps high-quality
scaleable format

.pdf compressed
image

Courtesy of The MathWorks, Inc.
Used with permission.

Figures: Exercise

• Open a figure and plot a sine wave over two periods with
data points at 0, pi/8, 2pi/8… . Use black squares as
markers and a dashed red line of thickness 2 as the line
» figure
» plot(0:pi/4:4*pi,sin(0:pi/4:4*pi),'rs--',...
'LineWidth',2,'MarkerFaceColor','k');

• Save the figure as a pdf

• View with pdf viewer.

Visualizing matrices

• Any matrix can be visualized as an image
» mat=reshape(1:10000,100,100);
» imagesc(mat);
» colorbar

• imagesc automatically scales the values to span the entire
colormap

• Can set limits for the color axis (analogous to xlim, ylim)
» caxis([3000 7000])

Colormaps
• You can change the colormap:

» imagesc(mat)
default map is jet

» colormap(gray)
» colormap(cool)
» colormap(hot(256))

• See help hot for a list

• Can define custom colormap
» map=zeros(256,3);
» map(:,2)=(0:255)/255;
» colormap(map);

Images: Exercise

• Construct a Discrete Fourier Transform Matrix of size 128
using dftmtx

• Display the phase of this matrix as an image using a hot
colormap with 256 colors

» dMat=dftmtx(128);
» phase=angle(dMat);
» imagesc(phase);
» colormap(hot(256));

-1
-0.5

0
0.5

1

-1
-0.5

0

0.5
1

-10

-5

0

5

10

3D Line Plots

• We can plot in 3 dimensions just as easily as in 2
» time=0:0.001:4*pi;
» x=sin(time);
» y=cos(time);
» z=time;
» plot3(x,y,z,'k','LineWidth',2);
» zlabel('Time');

• Use tools on figure to rotate it
• Can set limits on all 3 axes

» xlim, ylim, zlim

Surface Plots

• It is more common to visualize surfaces in 3D

• Example:

• surf puts vertices at specified points in space x,y,z, and
connects all the vertices to make a surface

• The vertices can be denoted by matrices X,Y,Z

• How can we make these matrices
loop (DUMB)
built-in function: meshgrid

() () ()
[] []

f x, y sin x cos y

x , ; y ,π π π π

=

∈ − ∈ −

surf

• Make the x and y vectors
» x=-pi:0.1:pi;
» y=-pi:0.1:pi;

• Use meshgrid to make matrices (this is the same as loop)
» [X,Y]=meshgrid(x,y);

• To get function values,
evaluate the matrices
» Z =sin(X).*cos(Y);

• Plot the surface
» surf(X,Y,Z)
» surf(x,y,Z);

surf Options

• See help surf for more options
• There are three types of surface shading

» shading faceted
» shading flat
» shading interp

• You can change colormaps
» colormap(gray)

contour

• You can make surfaces two-dimensional by using contour
» contour(X,Y,Z,'LineWidth',2)

takes same arguments as surf
color indicates height
can modify linestyle properties
can set colormap

» hold on
» mesh(X,Y,Z)

Exercise: 3-D Plots

• Plot exp(-.1(x^2+y^2))*sin(xy) for x,y in [–2*pi,2*pi]
with interpolated shading and a hot colormap:

» x=-2*pi:0.1:2*pi;
» y=-2*pi:0.1:2*pi;
» [X,Y]=meshgrid(x,y);
» Z =exp(-.1*(X.^2+Y.^2)).*sin(X.*Y);
» surf(X,Y,Z);
» shading interp
» colormap hot

Specialized Plotting Functions

• MATLAB has a lot of specialized plotting functions
• polar-to make polar plots

» polar(0:0.01:2*pi,cos((0:0.01:2*pi)*2))
• bar-to make bar graphs

» bar(1:10,rand(1,10));
• quiver-to add velocity vectors to a plot

» [X,Y]=meshgrid(1:10,1:10);
» quiver(X,Y,rand(10),rand(10));

• stairs-plot piecewise constant functions
» stairs(1:10,rand(1,10));

• fill-draws and fills a polygon with specified vertices
» fill([0 1 0.5],[0 0 1],'r');

• see help on these functions for syntax
• doc specgraph – for a complete list

Outline

(1) Plotting Continued
(2) Scripts
(3) Functions
(4) Flow Control

Scripts: Overview

• Scripts are
written in the MATLAB editor
saved as MATLAB files (.m extension)
evaluated line by line

• To create an MATLAB file from command-line
» edit myScript.m

• or click

Courtesy of The MathWorks, Inc. Used with permission.

Scripts: the Editor

* Means that it's not saved

Line numbers

Debugging tools

Comments

MATLAB
file path

Help file

Possible breakpoints
Courtesy of The MathWorks, Inc. Used with permission.

Scripts: Good Practice

• Take advantage of "smart indent" option

• Keep code clean
Use built-in functions
Vectorize, vectorize, vectorize
When making large matrices, allocate space first

– Use nan or zeros to make a matrix of the desired size

• Keep constants at the top of the MATLAB file

• COMMENT!
Anything following a % is seen as a comment
The first contiguous comment becomes the script's help file
Comment thoroughly to avoid wasting time later

Hello World

• Here are several flavors of Hello World to introduce MATLAB

• MATLAB will display strings automatically
» ‘Hello 6.094’

• To remove “ans =“, use disp()
» disp('Hello 6.094')

• sprintf() allows you to mix strings with variables
» class=6.094;
» disp(sprintf('Hello %g', class))

The format is C-syntax

Exercise: Scripts

• A student has taken three exams. The performance on the
exams is random (uniform between 0 and 100)

• The first exam is worth 20%, the second is worth 30%, and
the final is worth 50% of the grade

• Calculate the student's overall score
• Save script as practiceScript.m and run a few times

» scores=rand(1,3)*100;
» weights=[0.2 0.3 0.5];
» overall=scores*weights’

Outline

(1) Plotting Continued
(2) Scripts
(3) Functions
(4) Flow Control

User-defined Functions

• Functions look exactly like scripts, but for ONE difference
Functions must have a function declaration

Help file

Function declaration

InputsOutputs

Courtesy of The MathWorks, Inc. Used with permission.

User-defined Functions

• Some comments about the function declaration

• No need for return: MATLAB returns the variables whose
names match those in the function declaration

• Variable scope: Any variables created within the function
but not returned disappear after the function stops running

• Can have variable input arguments (see help varargin)

function [x, y, z] = funName(in1, in2)

Must have the reserved
word: function

Function name should
match MATLAB file
nameIf more than one output,

must be in brackets

Inputs must be specified

Functions: Exercise

• Take the script we wrote to calculate the student's overall
score and make it into a function

• The inputs should be
the scores row vector
the weight row vector, with the same length as scores

• The output should be
A scalar: the overall score

• Assume the user knows the input constraints (no need to
check if the inputs are in the correct format\size)

• Name the function overallScore.m

Functions: Exercise

Courtesy of The MathWorks, Inc. Used with permission.

Functions

• We're familiar with
» zeros
» size
» length
» sum

• Look at the help file for size by typing
» help size

• The help file describes several ways to invoke the function
D = SIZE(X)
[M,N] = SIZE(X)
[M1,M2,M3,...,MN] = SIZE(X)
M = SIZE(X,DIM)

Functions

• MATLAB functions are generally overloaded
Can take a variable number of inputs
Can return a variable number of outputs

• What would the following commands return:
» a=zeros(2,4,8);
» D=size(a)
» [m,n]=size(a)
» [x,y,z]=size(a)
» m2=size(a,2)

• Take advantage of overloaded methods to make your code
cleaner!

Outline

(1) Plotting Continued
(2) Scripts
(3) Functions
(4) Flow Control

Relational Operators

• MATLAB uses mostly standard relational operators
equal ==
not equal ~=
greater than >
less than <
greater or equal >=
less or equal <=

• Logical operators normal bitwise
And & &&
Or | ||
Not ~
Xor xor
All true all
Any true any

• Boolean values: zero is false, nonzero is true
• See help . for a detailed list of operators

if/else/elseif

• Basic flow-control, common to all languages
• MATLAB syntax is somewhat unique

IF

if cond

commands

end

ELSE

if cond

commands1

else

commands2

end

ELSEIF

if cond1

commands1

elseif cond2

commands2

else

commands3

end

• No need for parentheses: command blocks are between
reserved words

Conditional statement:
evaluates to true or false

for

• for loops: use for a definite number of iterations
• MATLAB syntax:

for n=1:100
commands

end

• The loop variable
Is defined as a vector
Is a scalar within the command block
Does not have to have consecutive values

• The command block
Anything between the for line and the end

Loop variable

Command block

while

• The while is like a more general for loop:
Don't need to know number of iterations

• The command block will execute while the conditional
expression is true

• Beware of infinite loops!

WHILE

while cond
commands

end

Exercise: Control-Flow

• Write a function to calculate the factorial of an integer N using a
loop (you can use a for or while loop). If the input is less than 0,
return NaN. Test it using some values.

» function a = factorial(N)
» if N<0,
» a=nan,
» else
» a = 1;
» for k=1:N
» a = a*k;
» end
» end

• But note that factorial() is already implemented! You should see if
there are built-in functions before implementing something
yourself.
» which factorial

find

• find is a very important function
Returns indices of nonzero values
Can simplify code and help avoid loops

• Basic syntax: index=find(cond)
» x=rand(1,100);
» inds = find(x>0.4 & x<0.6);

• inds will contain the indices at which x has values between
0.4 and 0.6. This is what happens:

x>0.4 returns a vector with 1 where true and 0 where false
x<0.6 returns a similar vector
The & combines the two vectors using an and
The find returns the indices of the 1's

Exercise: Flow Control

• Given x= sin(linspace(0,10*pi,100)), how many of the
entries are positive?

Using a loop and if/else

count=0;

for n=1:length(x)

if x(n)>0

count=count+1;

end

end

Being more clever

count=length(find(x>0));

length(x) Loop time Find time

100 0.01 0

10,000 0.1 0

100,000 0.22 0

1,000,000 1.5 0.04

• Avoid loops like the plague!
• Built-in functions will make it faster to write and execute

Efficient Code

• Avoid loops whenever possible
This is referred to as vectorization

• Vectorized code is more efficient for MATLAB
• Use indexing and matrix operations to avoid loops
• For example:

» a=rand(1,100);
» b=zeros(1,100);
» for n=1:100
» if n==1
» b(n)=a(n);
» else
» b(n)=a(n-1)+a(n);
» end
» end

Slow and complicated

» a=rand(1,100);
» b=[0 a(1:end-1)]+a;

Efficient and clean

Exercise: Vectorization

• Alter your factorial program to work WITHOUT a loop. Use
prod

» function a=factorial(N)
» a=prod(1:N);

• You can tic/toc to see how much faster this is than the
loop!

• BUT…Don’t ALWAYS avoid loops
Over-vectorizing code can obfuscate it, i.e. you won’t be
able to understand or debug it later
Sometime a loop is the right thing to do, it is clearer and
simple

End of Lecture 2

(1) Plotting Continued
(2) Scripts
(3) Functions
(4) Flow Control

Vectorization makes
coding fun!

	6.094�Introduction to Programming in MATLAB®
	Outline
	Cartesian Plots
	Playing with the Plot
	Line and Marker Options
	Labels
	Axis
	Axis Modes
	Multiple Plots in one Figure
	Copy/Paste Figures
	Saving Figures
	Figures: Exercise
	Visualizing matrices
	Colormaps
	Images: Exercise
	3D Line Plots
	Surface Plots
	surf
	surf Options
	contour
	Exercise: 3-D Plots
	Specialized Plotting Functions
	Outline
	Scripts: Overview
	Scripts: the Editor
	Scripts: Good Practice
	Hello World
	Exercise: Scripts
	Outline
	User-defined Functions
	User-defined Functions
	Functions: Exercise
	Functions: Exercise
	Functions
	Functions
	Outline
	Relational Operators
	if/else/elseif
	for
	while
	Exercise: Control-Flow
	find
	Exercise: Flow Control
	Efficient Code
	Exercise: Vectorization
	End of Lecture 2

