Introduction to Digital Signal Processing Systems

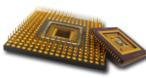
Lan-Da Van (范倫達), *Ph. D.* Department of Computer Science National Chiao Tung University Taiwan, R.O.C. *Spring, 2007*

ldvan@cs.nctu.edu.tw

http://www.cs.nctu.edu.tw/~ldvan/

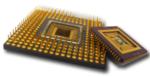
Outlines

- Introduction
- DSP Algorithms
- DSP Applications and CMOS IC's
- Representations of DSP Algorithms
- Conclusion
- References



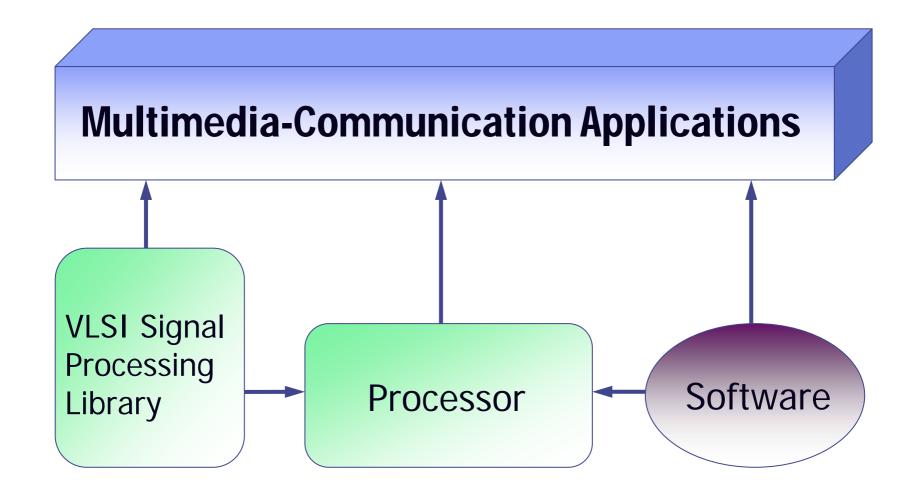
Why Use Digital Signal Processing?

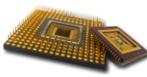
- Robust to temperature and process variations
- Controlled better to accuracy
- Noise/interference tolerances
- Mathematical representation
- Programming capability



VLSI Digital Signal Processing Systems

Common System Configuration





VLSI Signal Processing System Design Spectrum

- Computer arithmetic
 - Adder
 - Multiplier
- Digital filter
- Adaptive digital filter
 - LMS/DLMS (Delay LMS) based
 - RLS based

Transform

- Multiplier-accumulator based
- Recursive-filter based
- ROM-based: DA, CORDIC
- Butterfly based

Processor

- General purposed processor
- DSP processor
- Reconfigurable computing processor
- Non-numerical operation
 - Error control coding
 - Viterbi Decoder
 - Turbo Code
 - Polynomial computation
 - Dynamic programmable
 - Etc..

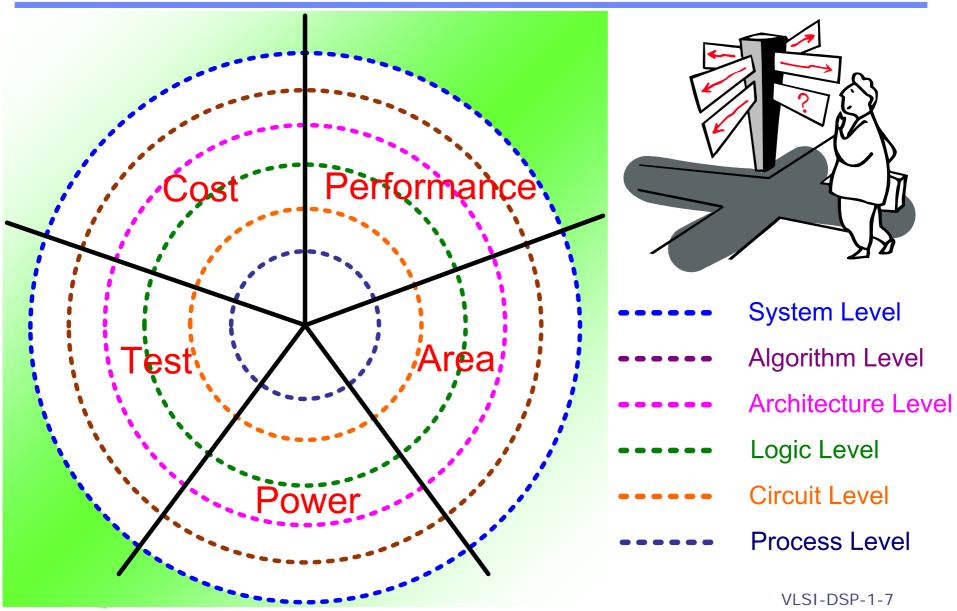
VLSI Signal Processing System Publication Area (But not limited...)

- IEEE Journal of Solid-State Circuits
- IEEE Journal on Selected Areas in Communications
- IEEE Micro
- IEEE Trans. on Biomedical Engineering
- IEEE Trans. on Circuits and Systems I: Regular Papers
- IEEE Trans. on Circuits and Systems II: Express Briefs
- IEEE Trans. on Circuits and Systems for Video Technology
- IEEE Trans. on Communications
- IEEE Trans. on Computer-Aided Design of Integrated Circuits
- IEEE Trans. on Computers
- IEEE Trans. on Image Processing
- IEEE Trans. on Information Theory
- IEEE Trans. on Multimedia
- IEEE Trans. on Nanotechnology
- IEEE Trans. on Neural Networks
- IEEE Trans. on Signal Processing
- IEEE Trans. on VLSI Systems
 - Proceedings of the IEEE
 - The Journal of VLSI Signal Processing Systems

Elsevier Integration - The VLSI Journal

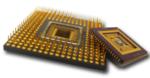
VLSI Digital Signal Processing Systems

VLSI Signal Processing System Design Space



Outlines

- DSP Algorithms
- DSP Applications and CMOS IC's
- Representations of DSP Algorithms



DSP Algorithms

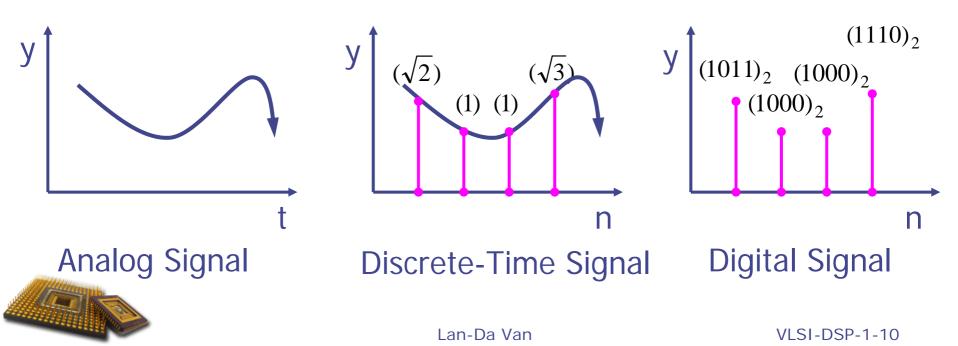
Algorithm: A set of rules for solving a

problem in a finite number of steps.

- Convolution
- Correlation
- Digital filters
- Adaptive filters
- Discrete Fourier transform
- Source Coding Algorithms
 - Discrete cosine transform
 - Motion estimation
 - Huffman coding
 - Vector quantization
- Decimator and expander
- Wavelet and filter banks
- Viterbi algorithm and dynamic programming

Signals

- Analog signal
 - t->y: y=f(t), y:C, n:C
- Discrete-time signal
 - n->y: y=f(nT), y:C, n:Z
- Digital signal
 - n->y: y=D{f(nT)}, y:Z,n:Z



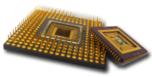
LTI Systems

Linear systems

- Assume x₁(n)->y₁(n) and x₂(n)->y₂(n), where "->" denotes "lead to". If ax₁(n)+bx₂(n)->ay₁(n)+by₂(n), then the systems is referred to as "Linear System."
- Homogenous and additive properties
- Time-invariant (TI) systems
 - $x(n-n_0) -> y(n-n_0)$
- LTI systems
 - y(n)=h(n)*x(n)
- Causal systems
 - y(n₀) depends only on x(n), where n<=n₀
- Stable systems
 - BIBO

Sampling of Analog Signals

- Nyquist sampling theorem
 - The analog signal must be band-limited
 - Sample rate must be larger than twice the bandwidth



System-Equation Representation

Impulse/unit sample response

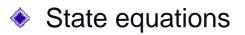
$$h(n) = b_0 a_1^n u[n]$$

Transfer function / frequency response

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0}{1 - a_1 z^{-1}}$$

Difference equations

$$y(n) = a_1 y(n-1) + b_0 x(n)$$



Convolution & Correlation

Convolution

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
$$= \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$
Correlation

$$y(n) = \sum_{\substack{k=-\infty \\ k=-\infty}}^{\infty} a(k)x(n+k)$$
$$= \sum_{\substack{k=-\infty \\ k=-\infty}}^{\infty} a(-k)x(n-k) = a(-n)*x(n)$$

Linear Phase FIR Digital Filters

- Digital filters are an important class of LTI systems.
- Linear phase FIR filter

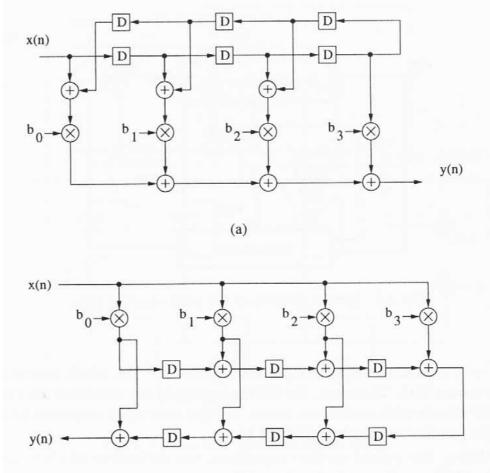
$$h(n) = h(M - n)$$

$$h(0) = h(6) = b_0$$

$$h(1) = h(5) = b_1$$

$$h(2) = h(4) = b_2$$

$$h(3) = b_3$$

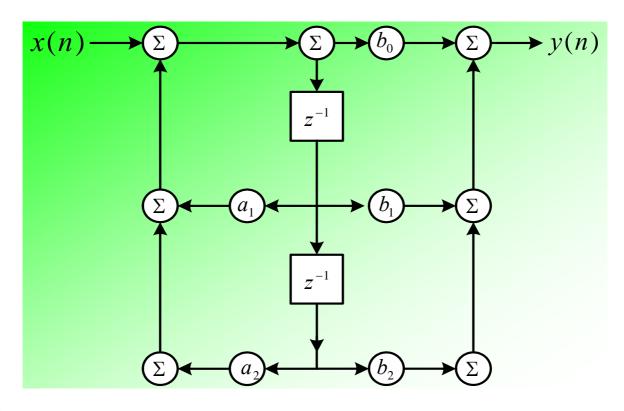


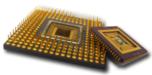
 $y(n) = b_0 x(n) + b_1 x(n-1) + b_2 x(n-2) + b_3 x(n-3)$ + b_0 x(n-6) + b_1 x(n-5) + b_2 x(n-4) VLSI-D

VLSI-DSP-1-15

IIR Filter Structures

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 - a_1 z^{-1} - a_2 z^{-2}}$$

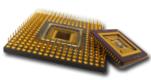




Lan-Da Van

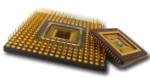
Introduction to an Adaptive Algorithm

- Widely used in communication, DSP, and control system
- Deterministic gradient / least square algorithm
 - Steepest descent algorithm
 - RLS algorithm
- Stochastic gradient algorithm
 - LMS algorithm, DLMS algorithm
 - Block LMS algorithm
 - Gradient Lattice algorithm



Adaptive Applications

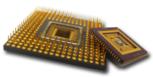
- Channel equalizer
- System identification
- Image enhancement
- Echo canceller
- Noise cancellation
- Predictor
- Line enhancement
- Beamformer



Notation

Input Signal: X(n)
 Desired Output: d(n)
 Weight Vector: W(n)
 Adaptation Factor: μ
 Error: e(n)

6.Misadjustment: M_{adj}
7.Tap Number: N
8.Autocorrelation Matrix: R
9.Eigenvalue:λ
10.Diagonal Matrix : Λ



Steepest Descent Algorithm

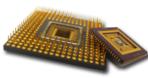
$$y(n) = W^{T}(n)X(n)$$

where $X(n) = [x(n) x(n-1)...x(n-N+1)]^{T}$
 $W(n) = [w_{0}(n) w_{1}(n)...w_{N-1}(n)]^{T}$

The error at the n-th time is

$$e(n) = d(n) - y(n)$$

= $d(n) - W^{T}(n)X(n)$
= $d(n) - X^{T}(n)W(n)$

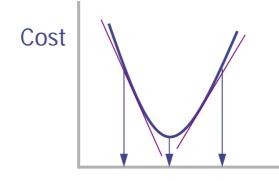


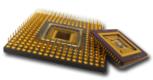
LMS Algorithm

- An efficient implementation in software of steepest descent using measured or estimated gradients
- The gradient of the square of a single error sample

$$W(n+1) = W(n) + \frac{1}{2}\mu(-\hat{\nabla}J(n))$$
$$\hat{\nabla}J(n) = -2e(n)X(n)$$

$$=>W(n+1)=W(n)+\mu e(n)X(n)$$





w0', w1, w0 Lan-Da Van

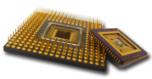
VLSI-DSP-1-21

VLSI Digital Signal Processing Systems

Summary of LMS Adaptive Algorithm (1960)

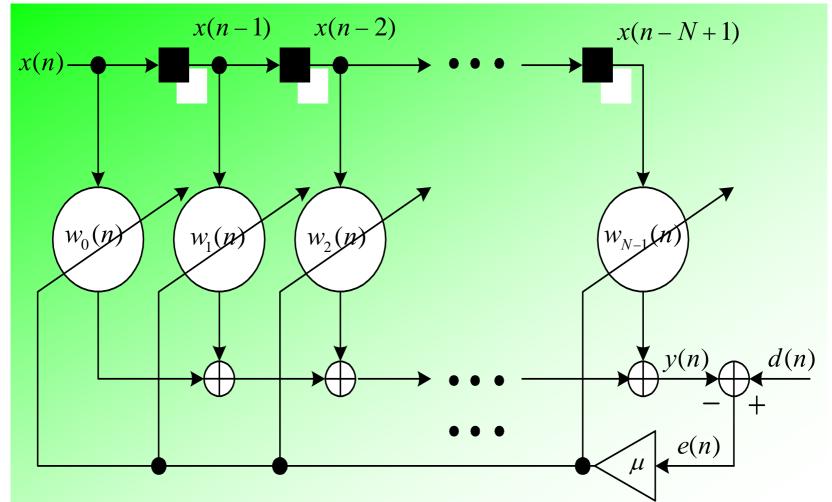
 $y(n) = \mathbf{w}^T(n)\mathbf{x}(n)$ e(n) = d(n) - y(n)

$\mathbf{w}(n+1) = \mathbf{w}(n) + \mu e(n)\mathbf{x}(n)$



VLSI Digital Signal Processing Systems

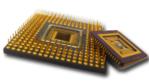
Block Diagram of an Adaptive FIR Filter Driven by the LMS Algorithm



Definition: (from Linear Algebra)

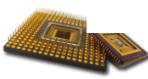
Let **A** be $n \times n$ matrix that satisfies $AA^* = A^*A = I$.

We call **A** as an unitary matrix if **A** has complex entries, and we call **A** an orthogonal matrix if **A** has real number.



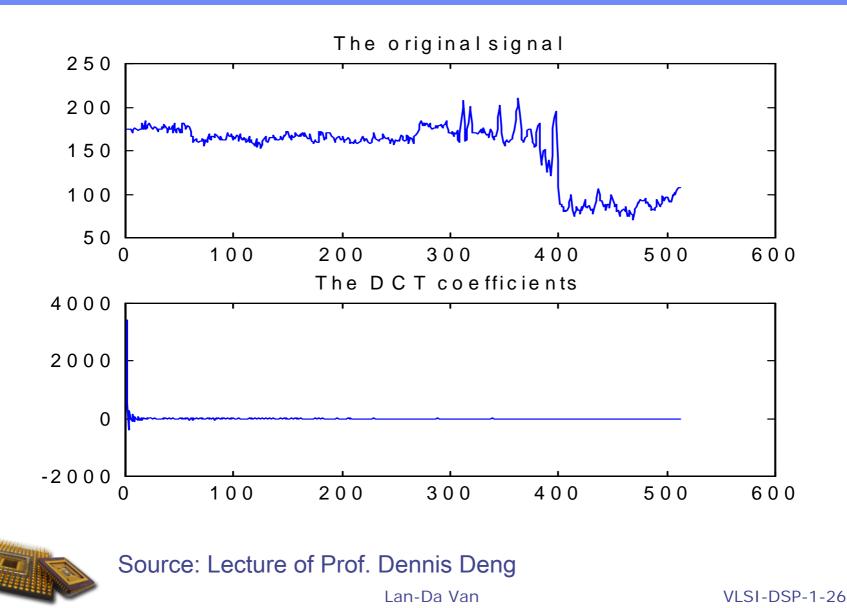
Why Orthogonal Transformation? (2/4)

- Energy conservation
- Energy compaction
 - Most unitary transforms tend to pack a large fraction of the average energy of signals into a relatively few components of the transform coefficients.
- Decorrelation
 - When signals are highly correlated, the transform coefficients tend to be uncorrected (or less correlated).
- Information preservation
 - The information carried by signals are preserved under a unitary transform.



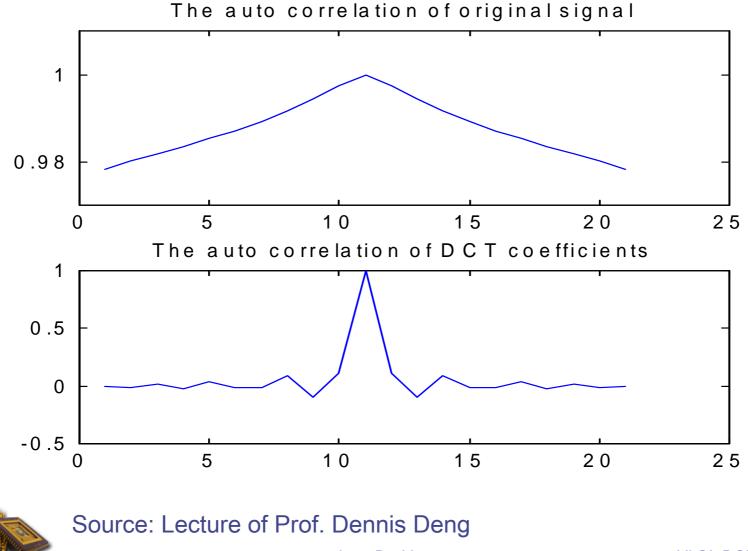
VLSI Digital Signal Processing Systems

Why Orthogonal Transformation? (3/4)



VLSI Digital Signal Processing Systems

Why Orthogonal Transformation? (4/4)



Lan-Da Van

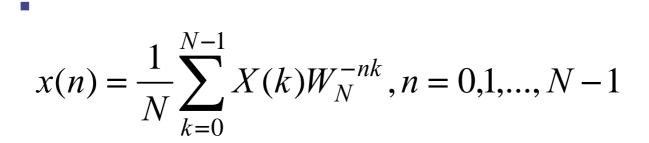
VLSI-DSP-1-27

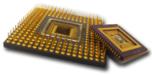
Discrete Fourier Transform (1/9)

DFT

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}, n = 0, 1, ..., N-1$$

$$W_N = e^{-j\frac{2\pi}{N}}, \ W_N^{nk} = e^{-j\frac{2\pi}{N}nk}$$





Fast Fourier Transform (2/9)

- The radix-2 algorithm is the most widely used fast algorithm to compute the DFT.
- Let us use an 8-point DFT (N=8) to illustrate the development of the fast algorithm

$$X(k) = \sum_{n=0}^{\prime} x(n) W_N^{kn}$$

 $= x(0) + x(2)W_N^{2k} + x(4)W_N^{4k} + x(6)W_N^{6k}$ +x(1)W_N^k + x(3)W_N^{3k} + x(5)W_N^{5k} + x(7)W_N^{7k} = x(0) + x(2)W_N^{2k} + x(4)W_N^{4k} + x(6)W_N^{6k} + $W_N^k(x(1) + x(3)W_N^{2k} + x(5)W_N^{4k} + x(7)W_N^{6k})$

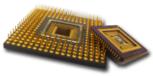
Fast Fourier Transform (3/9)

• Since
$$W_N^{2k} = e^{-j\frac{2\pi}{N}2k} = e^{-j\frac{2\pi}{(N/2)}k} = W_{N/2}^k$$

♦ 8-point DFT => Nearly two 4-point DFT
 $X(k) = x(0) + x(2)W_{N/2}^{k} + x(4)W_{N/2}^{2k} + x(6)W_{N/2}^{3k} + W_{N}^{k}(x(1) + x(3)W_{N/2}^{k} + x(5)W_{N/2}^{2k} + x(7)W_{N/2}^{3k})$ $= F_{1}(k) + W_{N}^{k}F_{2}(k), \text{ where } k = 0, 1, 2, ..., N-1$

where $F_1(k)$ and $F_2(k)$ represent the DFT of two sequences

$$f_1(n) = x(2n) and f_2(n) = x(2n+1)$$



Fast Fourier Transform (4/9)

• One step further: (=>Two 4-point DFT)

$$W_N^{k+N/2} = e^{-j\frac{2\pi}{N}(k+N/2)} = e^{-j\frac{2\pi}{N}k}e^{-j\pi} = -W_N^k$$
 and $W_{N/2}^{k+N/2} = W_{N/2}^k$
 $X(k) = F_1(k) + W_N^k F_2(k), \ k = 0,1,...,N/2-1$
 $X(k+N/2) = F_1(k) - W_N^k F_2(k), \ k = 0,1,...,N/2-1$
• An N-point DFT requires N² complex multiplications. The
number of complex multiplications required by the above

algorithm

$$2(N/2)^2 + N = 40 \ (N = 8)$$

An 8-point DFT requires 64 complex multiplications

Fast Fourier Transform (5/9)

The 4-point DFT can be decomposed into two 2-point DFT in a similar way

$$\begin{split} F_1(k) &= x(0) + x(4) W_{N/2}^{2k} + x(2) W_{N/2}^k + x(6) W_{N/2}^{3k} \\ &= x(0) + x(4) W_{N/4}^k + W_{N/2}^k (x(2) + x(6) W_{N/4}^k) \\ &= V_{11}(k) + W_{N/2}^k V_{12}(k) \end{split}$$

where $V_{11}(k)$ and $V_{12}(k)$ represent the DFT of two sequences \diamond As before,

 $\begin{aligned} v_{11}(n) &= f_1(2n) and \, v_{12}(n) = f_1(2n+1) \\ F_1(k) &= V_{11}(k) + W_{N/2}^k V_{12}(k), k = 0, 1, \dots, N/4 - 1 \\ F_1(k+N/2) &= V_{11}(k) - W_{N/2}^k V_{12}(k), k = 0, 1, \dots, N/4 - 1 \end{aligned}$

VLSI Digital Signal Processing Systems

Fast Fourier Transform (6/9)

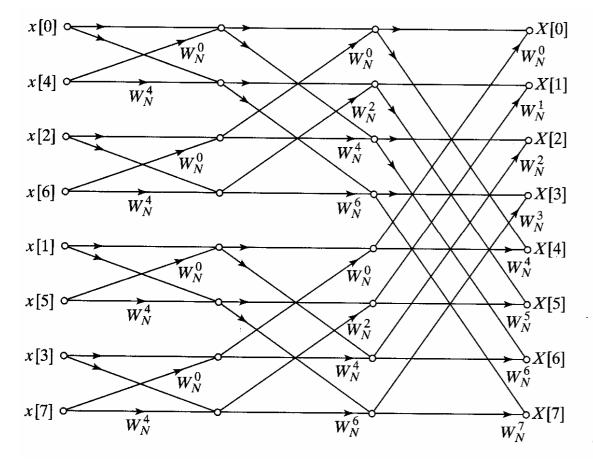
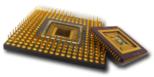


Figure 9.7 Flow graph of complete decimation-in-time decomposition of an 8-point DFT computation.



Fast Fourier Transform (7/9)

♦ A 2-point FFT, such as $V_{11}(k)$ and $V_{12}(k)$ involves only real addition

$$V_{11}(k) = x(0) + W_{2}^{k} x(4), W_{2}^{0} = 1, W_{2}^{1} = -1$$

$$V_{11}(0) = x(0) + W_{N}^{0} x(4)$$

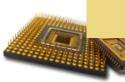
$$V_{11}(1) = x(0) - W_{N}^{0} x(4)$$
a
$$V_{11}(1) = x(0) - W_{N}^{0} x(4)$$
b
$$V_{$$

Each butterfly requires one complex multiplication and two complex addition

Lan-Da Van

Fast Fourier Transform (8/9)

	· · · · · ·	the sea	quence is in a	bit-rev	rersed
order					
original order		decimation1		decimation 2	
	n2n1n0		n0n2n1		n0n1n2
0	000	0	000	0	000
1	001	2	010	4	100
2	010	4	100	2	010
3	011	6	110	6	110
4	100	1	001	1	001
5	101	3	011	5	101
6	110	5	101	3	011
7	111	7	111	7	111



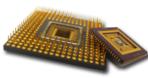
Fast Fourier Transform (9/9)

• This FFT algorithm is generally true for any data sequence of $N = 2^{\nu}$

 The number of operations required for an FFT: (Before simplifying)

Complex multiplication: $N \log_2 N$

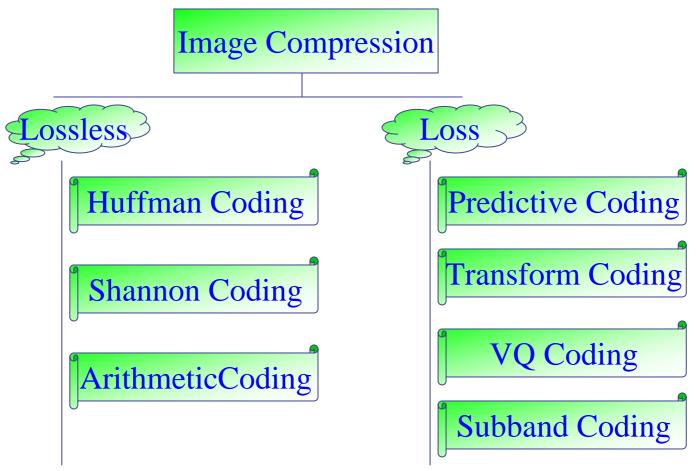
Complex addition: $N \log_2 N$



Image/Video Compression

- Where coding?
 - Source coding
 - Channel coding
- Source coding benefits
 - Lower bit rate
 - Less transmission time
 - Fewer storage data
- What kind of loss?
 - Lossless data compression
 - Lossy data compression
- Why can we do compression?
 - Coding redundancy
 - Inter-sample redundancy (Spatial redundancy)
 - Inter-frame redundancy (Temporal redundancy)

Source Coding Spectrum



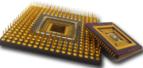


Image Measurement and Evaluation

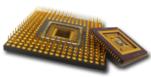
$$SNR(dB) = 10\log_{10}(\sigma_x^2 / \sigma_n^2)$$

 $PSNR(dB) = 10 \log_{10}(255^2 / \sigma_n^2)$

$$\sigma_n = \sqrt{\frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} [x(i,j) - \hat{x}(i,j)]^2}$$

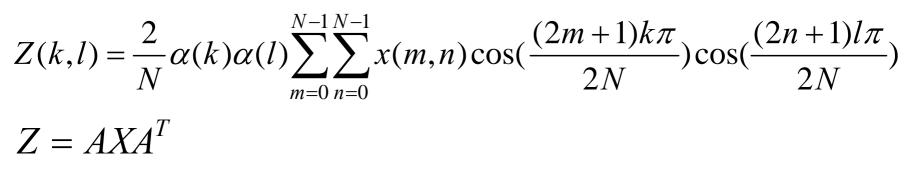
where x(i,j) and $\hat{x}(i,j)$ are the original image and reconstructed image values.

$$X(k) = \alpha(k) \sum_{n=0}^{N-1} x(n) \cos\left[\frac{(2n+1)k\pi}{2N}\right], 0 \le k \le N-1$$
$$\alpha(0) = \sqrt{\frac{1}{N}} \qquad \alpha(k) = \sqrt{\frac{2}{N}}, \text{ for } 1 \le k \le N-1$$



2-D DCT-II and IDCT-II

DCT-II



IDCT-II

$$x(m,n) = \frac{2}{N} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} \alpha(k) \alpha(l) Z(k,l) \cos(\frac{(2m+1)k\pi}{2N}) \cos(\frac{(2n+1)l\pi}{2N})$$
$$X = A^T Z A$$

where k, l, m, and n range from 0 to N-1 and

where
$$\alpha(0) = 1/\sqrt{2}$$
 and $\alpha(j) = 1$ for $j \neq 0$.

VLSI-DSP-1-41

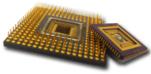
How to Decide the Coefficients?

Orthogonal Property

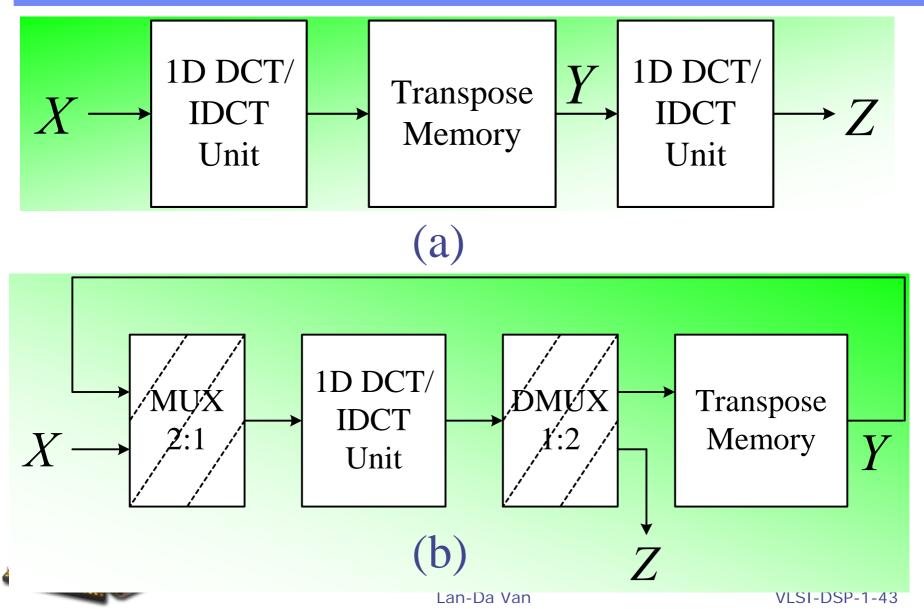
$$AA^{T} = A^{T}A = I$$

Parseval's Theorem: Energy Conservation

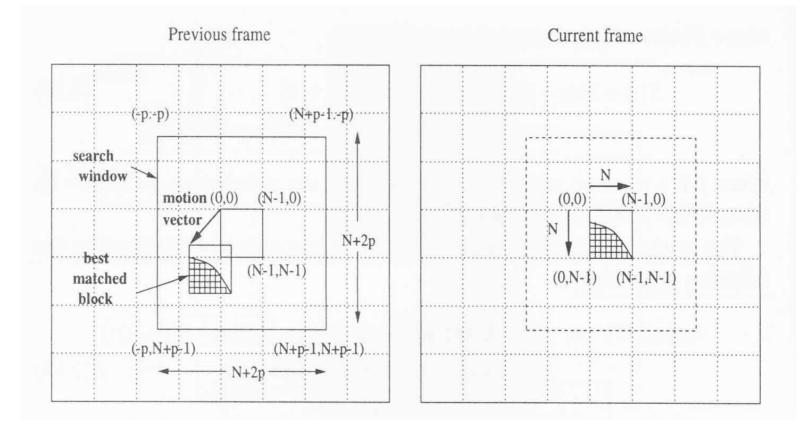
$$\sum_{n=0}^{N-1} |x(n)|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X(k)|^2$$



2-D DCT/IDCT Processor



Block-Matching Algorithm



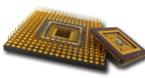
Rule:

Huffman Coding (1/3)

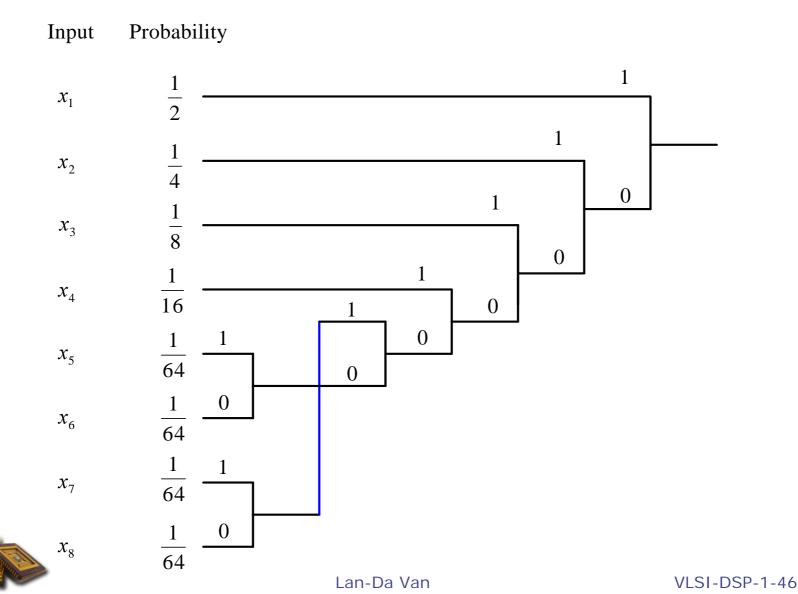
- Information Measurement
- Uncertainty Measurement
- Surprise Measurement

$$H(P) = \sum_{i=1}^{q} p_i \log_2(1/p_i)$$

$$Cr = \frac{\text{uncoding bits}}{\text{coding bits}}$$



Huffman Coding (2/3)



Huffman Coding (3/3)

$$AvLen_{Natural_Code} = 3$$
 bit

 $Cr = \frac{\text{uncoding bits}}{\text{coding bits}}$

$$=\frac{3}{2}=1.5$$

 $H(x)_{Entropy}$

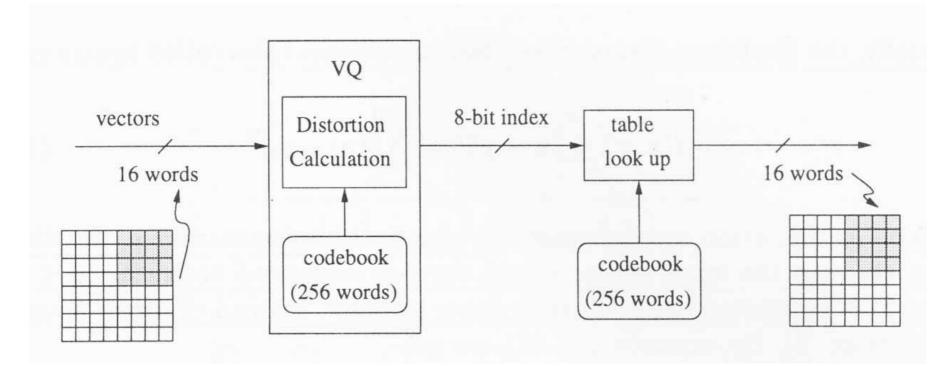
Data	Huffman Code	Natural Code	
x_1	1	000	
<i>x</i> ₂	01	001	
<i>x</i> ₃	001	010	
x_4	0001	011	
<i>x</i> ₅	000001	100	
<i>x</i> ₆	000000	101	
<i>x</i> ₇	000011	110	
x_8	000010	111	

$$=\frac{1}{2}\log_2 2 + \frac{1}{4}\log_2 4 + \frac{1}{8}\log_2 8 + \frac{1}{16}\log_2 16 + \frac{1}{64}(4x\log_2 64) = 2$$
 bit

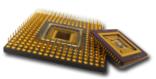
 $AvLen_{\rm Huffman_Code}$

$$=\frac{1}{2}x1 + \frac{1}{4}x2 + \frac{1}{8}x3 + \frac{1}{16}x4 + \frac{1}{64}(4x6) = 2$$
 bit

Vector Quantization

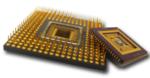


$$d(x, y) = ||x - y||^2 = \sum_{i=0}^{k-1} (x_i - y_i)^2$$

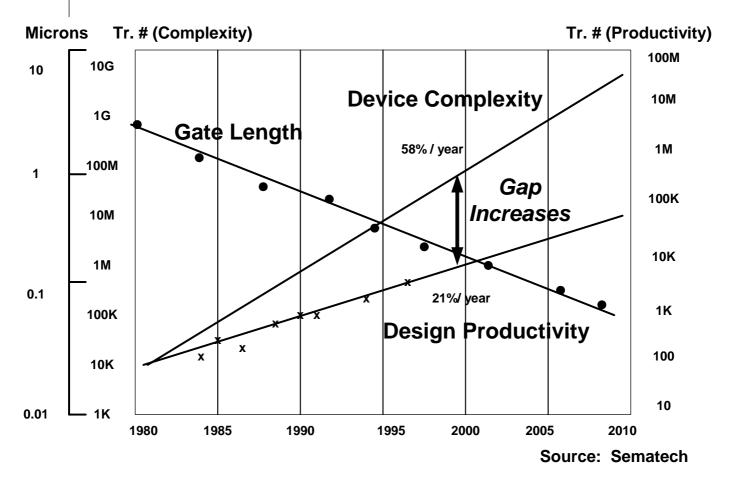


Outlines

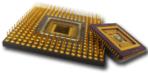
- Features:
- DSP Algorithms
- DSP Applications and CMOS IC's
- Representations of DSP Algorithms



Moore's Law



The number of transistors per chip doubles every 18 months.



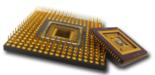
* Cordon Moore: One of the founders of Intel

Lan-Da Van

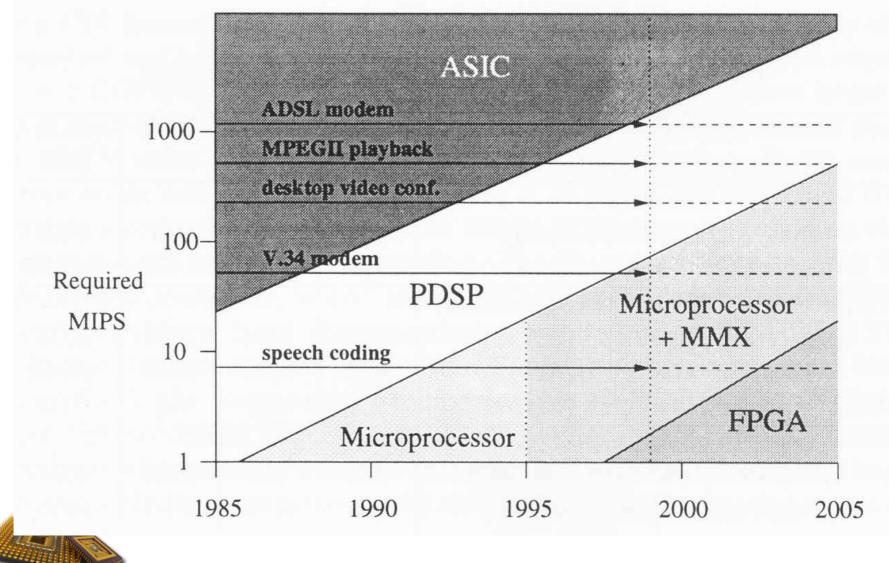
VLSI Digital Signal Processing Systems

Common DSP Algorithms and Their Applications

DSP Algorithms	System Applications		
Speech coding and decoding	Digital cellular phones, personal communication systems, digital cordless phones, multimedia computers, secure communications		
Speech encryption and decryption	Digital cellular phones, personal communication systems, digital cordless phones, secure communications		
Speech recognition	Advanced user interfaces, multimedia workstations, robotics and automotive applications, digital cellular phones, personal communication systems, digital cordless phones		
Speech synthesis	Multimedia PCs, advanced user interfaces, robotics		
Modem algorithms	Digital cellular phones, personal communication systems, digital cordless phones, digital audio broadcast, multimedia computers, wireless computing, navigation, data/facsimile modems, secure communications		
Noise cancellation	Professional audio, advanced vehicular audio		
Audio equalization	Consumer audio, professional audio, advanced vehicular audio		
Image compression and decompression	Digital cameras, digital video, multimedia computers, consumer video		
Beamforming	Navigation, radar/sonar, signals intelligence		
Echo cancellation	Speakerphones, modems, telephone switches		

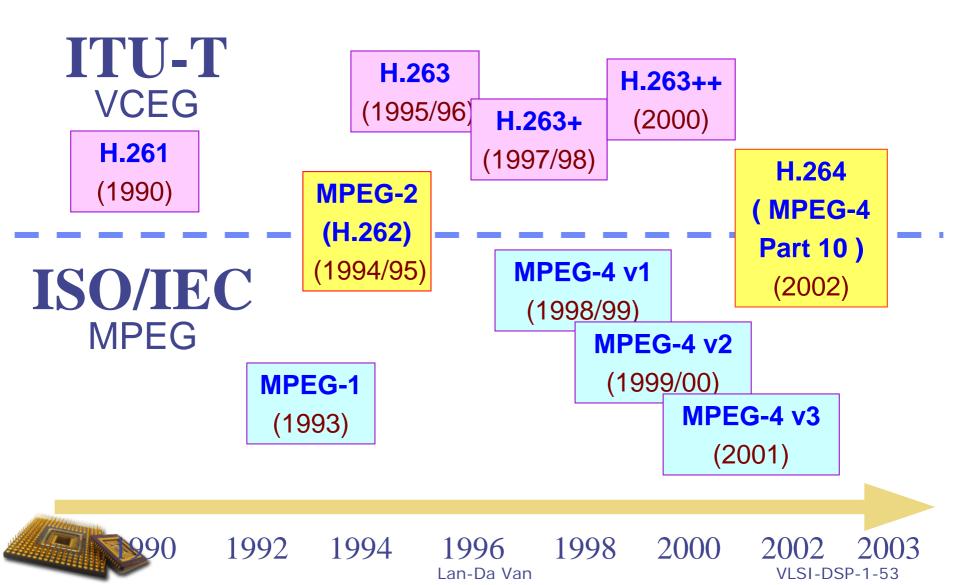


Evolution of Applications

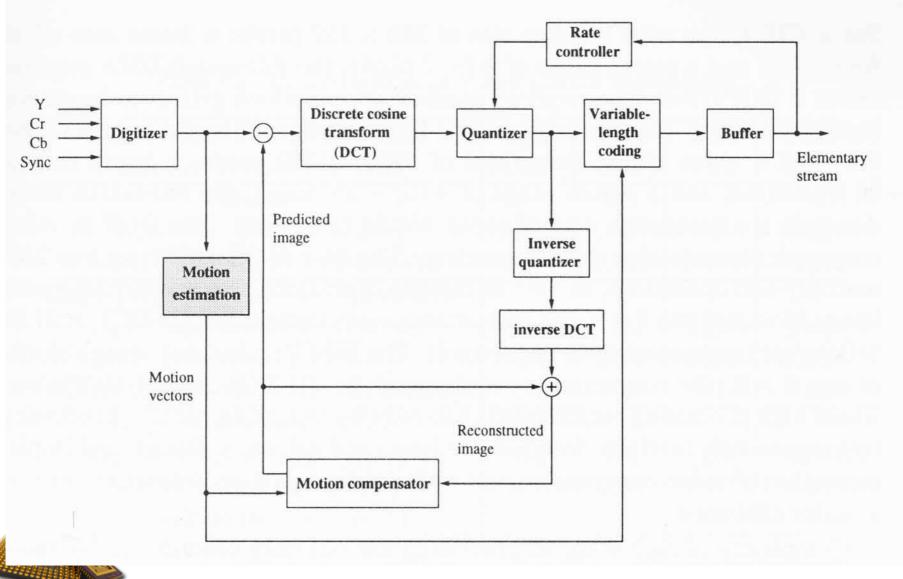


VLSI Digital Signal Processing Systems

Chronological Table of Video Coding Standards

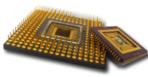


Block Diagram of MPEG-2 Encoder

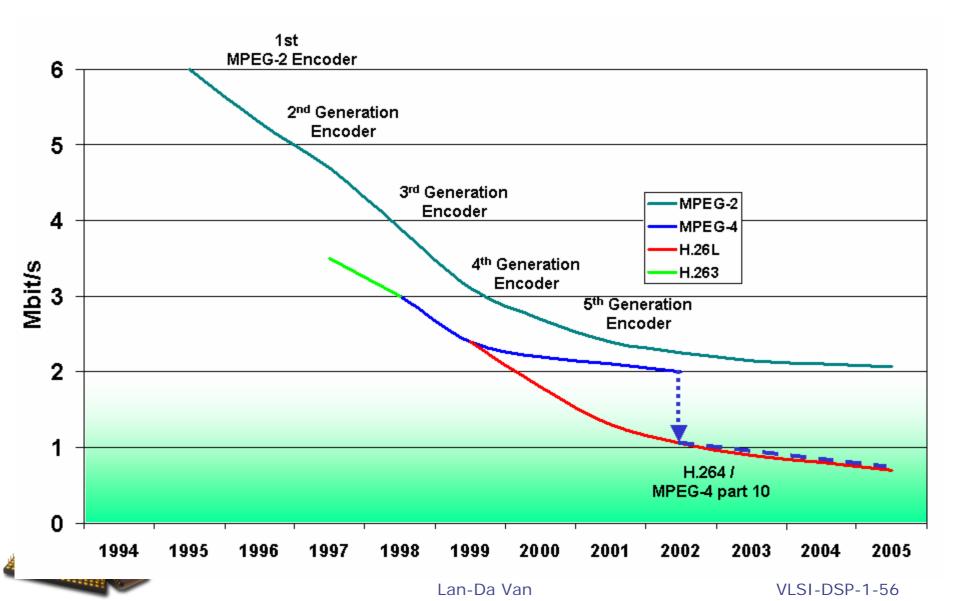


MPEG-2 / H.262: High Bit Rate, High Quality

- MPEG-2 contains 10 parts
- MPEG-2 Visual = H.262
- Not especially useful below 2 Mbps (range of use normally 2-20 Mbps)
- Applications: SDTV (2-5Mbps), DVD (6-8Mbps), HDTV (20Mbps), VOD
- Support for interlaced scan pictures
- PSNR, temporal, and spatial scalability
- "Profile" and "Level"
- 10-bit precision video sampling

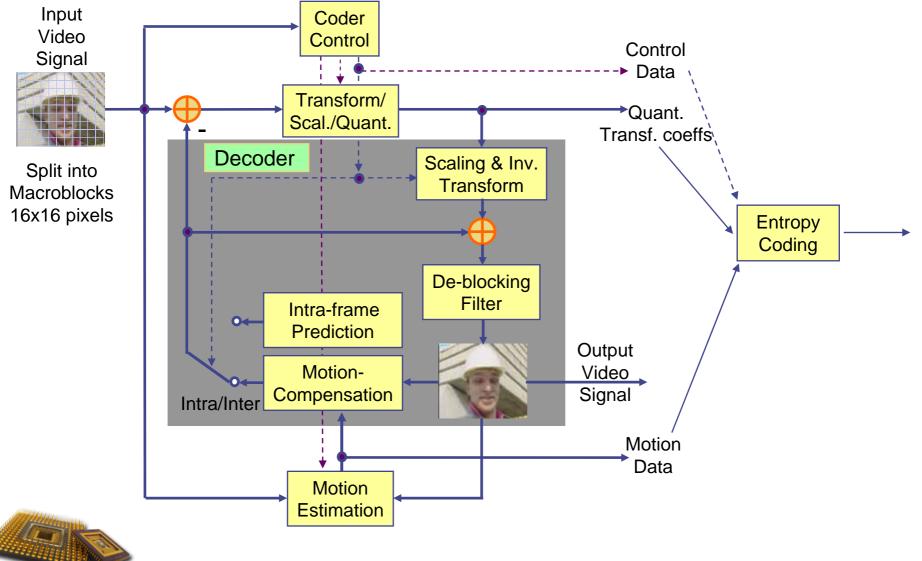


Position of H.264



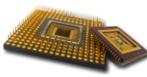
VLSI Digital Signal Processing Systems

Block Diagram of H.2264/AVC Encoder



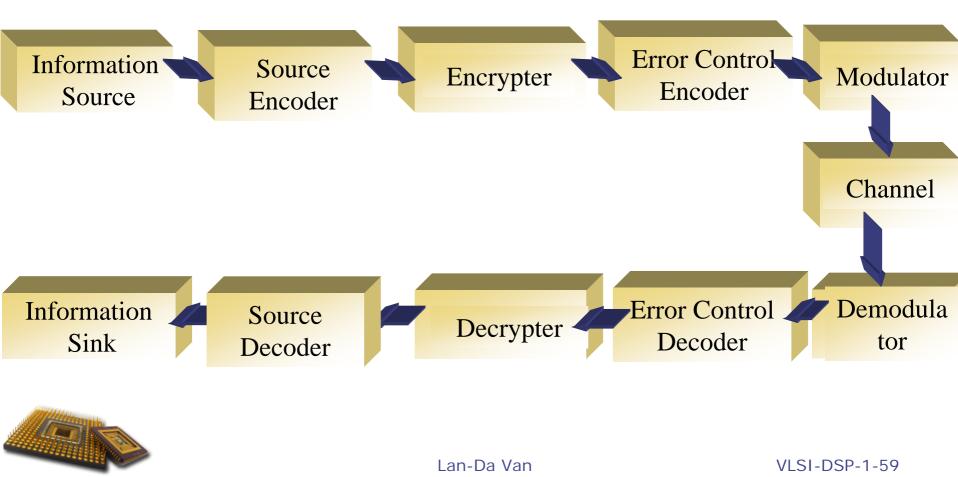
New Features of H.264

- Multi-mode, multi-reference MC
- Motion vector can point out of image border
- ◆ 1/4-, 1/8-pixel motion vector precision
- B-frame prediction weighting
- 4×4 integer transform
- Multi-mode intra-prediction
- In-loop de-blocking filter
- UVLC (Uniform Variable Length Coding)
- NAL (Network Abstraction Layer)
- SP-slices



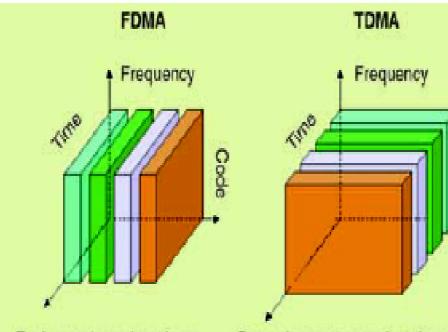
Digital Communications System

Enabling the transmitted signal to withstand the effects of various channel impairments, such as noise, interference, and fading.



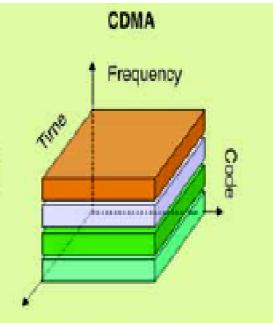
Multiple Access Techniques

Code

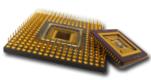


Each user is assigned one frequency to transmit at the same time. Examples: AMPS and TACS.

Several users transmit at the same frequency but in different time slots. Examples: GSM and IS-136.



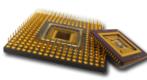
Users transmit at both the same frequency and time but modulate their signals with high bandwidth spreading signals, users separation is achieved because the spreading signals have low crosscorrelation. Examples: IS-95 and Globalstar.



VLSI Digital Signal Processing Systems

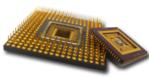
Comparisons of Various Cellular Standards (1/2)

Technology	Frequency	Bandwidth	Bit Rate	Range
Bluetooth	2.4GHz	79MHz	1Mbps	10m
			(Revision	
			> 10K & 100 M)	
GPRS	890~915 MHz	200KHz	Typical: 80 kbps	10km
	935~960 MHz		Up to 470 kbps	
	1,900 MHz			
W-CDMA	1,900~1,980 MHz	140MHz	144~384kbps	10km
	2,110~2,170 MHz		Up to 2 Mbps	
PHS	1,900~1,905 MHz	20 MHz	128kbp	500m
(Low Power	1,905~1,915 MHz		(demo 2 MHz)	
~10mW)				
802.11 a/b/g	2.4~5 GHz	83MHz	11~54Mbps	100m
			(162 Mbps)	



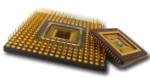
Comparisons of WLAN Standards

802.11x 標 準						
	802.11a	802.11b	802.11g	802.11n		
最快速率	54 Mbps	11 Mbps	54 Mbps	+100 Mbps		
频带	5 GHz	2.4 GHz	2.4 GHz	2.4-5 GHz		
傳輸距離	70m	100 m	100 m	+100m		
IEEE 認證	1999 年	1999 年	2003 年	2006 年		
Source : IEEE , 金鼎整理 , 2006 年 3 月						



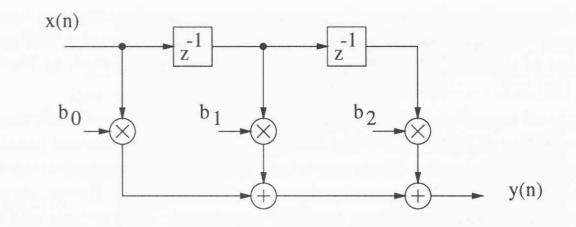
Outlines

- Features:
- DSP Algorithms
- DSP Applications and CMOS IC's
- Representations of DSP Algorithms
 - Block Diagrams
 - Signal-Flow Graph
 - Data-Flow Graph
 - Dependence Graph

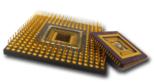


Block Diagram of a 3-Tap FIR Filter

 Def: A block diagram consists of functional blocks connected with directed edges.

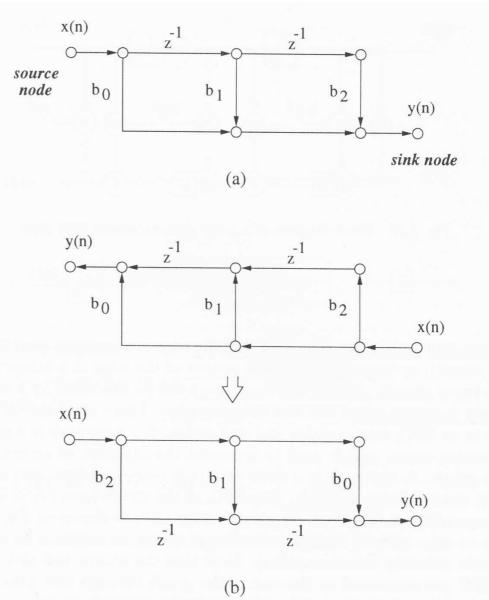


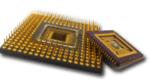




SFG of a 3-Tap FIR Filter

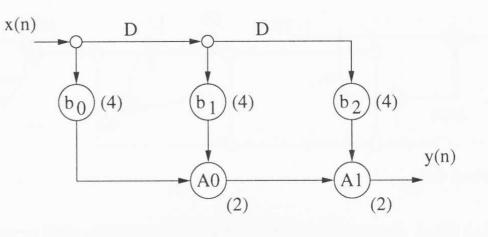
Def: A signal flow graph (SGF) is a collection of nodes and directed edges. The nodes represent computations or tasks. In digital networks, the edges are usually restricted to constant gain multipliers or delay elements.



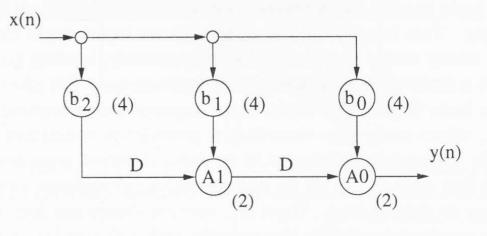


DFG of a 3-Tap FIR Filter

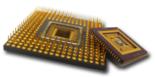
Def: A data flow graph (DFG) is a collection of nodes and directed edges. The nodes represent computations (or functions or subtasks) and the directed edges represent data path and each edge has a nonnegative number of delays associated with it.



(a)

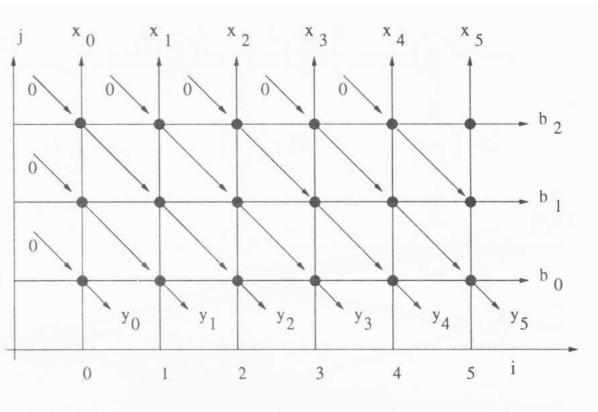


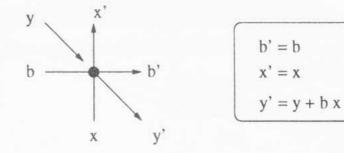
(b)

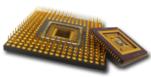


DG of a 3-Tap FIR Filter

Def: A dependence graph is a direct graph that shows the dependence of the computations in an 2 algorithm. The node in a DG represent computations and the edges represent precedence constraints among nodes. DG contains⁰ computations for all iterations in an algorithm and does not contain delay elements.

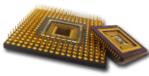






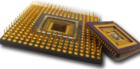
Conclusions

- Sriefly introduced the following:
 - DSP design issue and design view
 - DSP algorithms
 - Overview of DSP applications
 - Representations of DSP algorithms



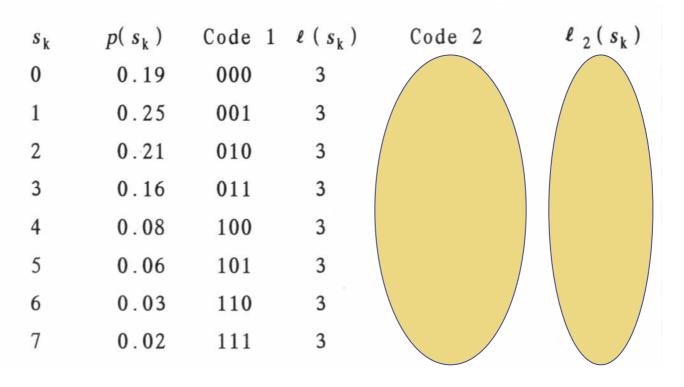
Self-Test Exercises

- STE1: What's difference between the convolution and digital filter?
- STE2: i) Please check the functionality of inverted form FIR filter structure using timing table. ii) Which one has higher speed between direct form and inverted form FIR filter?
- STE3: i) Derive the radix-2 algorithm to compute a 16-point FFT and draw a block diagram (using the butterfly) to illustrate its implementation. ii) Calculate the number of complex multiplication and addition operations required.
- ◆ STE4: If the length of the data sequence is not $N=2^{\vee}$ then zeros can be appended to the data sequence. How do you relate the DFT coefficients calculated with zero padding to those calculated without zero padding ? (use the Matlab *fft* function)



Self-Test Exercise

STE5: According the following figure, calculate Code 2, *l*₂ (*s*_k), as well as the average code length using huffman code. Also compare the above average code length with that using Entropy Theorem.



References (1/2)

- [1] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation. NY: Wiley, 1999.
- [2] P. Pirsch, Architectures for Digital Signal Processing. NY: Wiley, 1998.
- [3] A. V. Oppenheim and R. W. Schafer, *Discrete-Time Signal Processing*. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[4] S. Haykin, Adaptive Filter Theory, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

[5] 連國珍,數位影像處理, 1992.

Florida

[6] L. D. Van, S. S. Wang, and W. S. Feng, "Design of the lower-error fixed-width multiplier and its application", *IEEE Trans. Circuits Syst. II*, vol. 47, pp. 1112-1118, Oct. 2000.

[7] L. D. Van, C. C. Yang, "Generalized low-error area-efficient fixed-width multipliers," *IEEE Trans. Circuits Syst. I*, vol. 52, pp. 1608-1619, Aug. 2005.

[8] M. A. Song, L. D. Van, T. C. Huang, and S. Y. Kuo, "A generalized methodology for low-error and area-time efficient fixed-width Booth multipliers", *IEEE Int. Midwest Symp. Circuits Syst. (MWSCAS)*, Accepted, 2004.

[9] M. A. Song, L. D. Van, T. C. Huang and S. Y. Kuo, "A low-error and area-time efficient fixed-width Booth multiplier," *IEEE Int. Midwest Symp. Circuits Syst. (MWSCAS)*, Accepted, 2003.

[10] L. D. Van and S. H. Lee, "A generalized methodology for lower-error area-efficient fixed-width multipliers," in *Proc. IEEE Int. Symp. Circuits Syst. (ISCAS)*, May 2002, vol. 1, pp. 65-68, Phoenix , Arizona .

[11] L. D. Van, S. S. Wang, S. Tenqchen, W. S. Feng, and B. S. Jeng, "Design of a lower error fixed-width multiplier for speech processing application," in *Proc. IEEE Int. Symp. Circuits Syst. (ISCAS)*, May 1999, vol. 3, pp. 130-133, Orlando

Taiwan

References (2/2)

[12] L. D. Van, "A new 2-D systolic digital filter architecture without global broadcast," *IEEE Trans. VLSI Systs.,* vol. 10, pp. 477-486, Aug. 2002.

[13] L. D. Van, C. C. Tang, S. Tenqchen, and W. S. Feng, "A new VLSI architecture without global broadcast for 2-D systolic digital filters," in *Proc. IEEE Int. Symp. Circuits Syst. (ISCAS)*, May 2000, vol. 1, pp. 547-550, Geneva, Switzerland.

[14] L. D. Van, S. Tenqchen, C. H. Chang, and W. S. Feng, "A new 2-D digital filter using a locally broadcast scheme and its cascade form," in *Proc. IEEE Asia Pacific Conf. on Circuits Syst. (APCCAS)*, Dec. 2000, pp. 579-582, Tianjin, China.

[15] L. D. Van and W. S. Feng, "An efficient systolic architecture for the DLMS adaptive filter and its applications," *IEEE Trans. Circuits Syst. II*, vol. 48, pp. 359-366, April 2001.

[16] L. D. Van, S. Tenqchen, C. H. Chang, and W. S. Feng, "A tree-systolic array of DLMS adaptive filter," in *Proc. IEEE Int. Conf* on Acoustics, Speech and Signal Processing (ICASSP), Mar. 1999, vol. 3, pp. 1253-1256, Phoenix, Arizona.

[17] L. D. Van and W. S. Feng, "Efficient systolic architectures for 1-D and 2-D DLMS adaptive digital filters," in *Proc. IEEE Asia Pacific Conf. on Circuits Syst. (APCCAS)*, Dec. 2000, pp. 399-402, Tianjin, China.

[18] L. D. Van and C. H. Chang, "Pipelined RLS adaptive architecture using relaxed Givens rotations (RGR)," in *Proc. IEEE Int. Symp. Circuits Syst. (ISCAS)*, May 2002, vol. 1, pp. 37-40, Phoenix , Arizona.

[19] L. D. Van and C. C. Yang, "High-speed area-efficient recursive DFT/IDFT architectures," in *Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),* May 2004, vol. 3, pp. 357-360, Vancuover, Canada..

[20] L. D. Van, Y. C. Yu, C. M. Huang, C. T. Lin, "Low computation cycle and high speed recursive DFT/IDFT VLSI algorithm and architecture," in *Proc. IEEE Workshop on Signal Processing Systems (SiPS)*, Nov. 2005, pp. 579-584, Athens, Greece.

[21] L. D. Van, H. F. Luo, C. M. Wu, W. S. Hu, C. M. Huang, and W. C. Tsai, "A high-performance area-aware DSP processor architecture for video codecs," in *Proc. IEEE Int. Conf. Multimedia and Expo. (ICME)*, Jun. 2004, vol. 3, pp. 1499-1502, Taipei,