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Abstract

For several years some phenomena were reported in
two-grid coupled arrays made with Chua's cell. One of
them is the formation of Turing patterns. Until now,
there were two ways for controlling Turing patterns
formation in CNNs: using the dispersion curve and
respectively using different initial conditions [1]. This
work presents a new way of controlling Turing pattern
formation in CNNs: by using different bias current
source of the Chua's cell.

1 Introduction

The two-grid-coupled network is described by a system
of non-linear differential equations.

where h(u) has the form:

The cell will operate in the middle linear part and thus
h(u) equals m0u+ε.

2  The decoupling technique

The main technique for solving this system consists in
de-coupling the state variables. They can be de-coupled
by writing the solution as a function of a weighted sum
of spatial eigen-functions, in the form, depending on

the boundary type the basis of DCT (zero-flux

boundary) or FFT (periodic boundary) [2]. If we
consider an non-homogeneous bias current source with
a different value for each cell, then these values can be
viewed as a spatial input signal.
The linearized system of equations around the origin
can be written as bellow, where the ∇ denotes 1D
discrete laplacean.
Furthermore, we can decompose the spatial signal
generated by biases taking into account the orthogonal

basis. The orthogonal functions are eigen-functions for
the laplacean operator [3]. Considering that, the system
of equations is given above, where km

2 has, for

example, in the case of choosing φ(m,i) as members of
DCT basis the form described bellow, (the case of

choosing φ(m,i) as members of FFT basis was
previously detailed and the calculus is perfectly
identical).
We multiply the expression by φ(n,i), replace n by m
and obtain the expression:
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This is an non-homogeneous linear differential
equation system. Its solution is displayed above.

3  How the spatial signal influences final pattern?

The answer to this question must be given taking into
account the therms that contain spectrum elements of
spatial signal ε. First we have to determine the shape of
f1(ε^

m) and f2(ε^
m), respectively. We impose the

condition that the solution must satisfy the system of
equations for all moments of time. We derive the
following expressions for f1(ε^

m) and f2(ε^
m):

So, the spectral element of the spatial signal generated
by bias current sources is “amplified” by the terms
detailed above. In addition, am, bm, cm and dm depend
on the same spectral element. Consequently, the final

pattern will be influenced by the bias current sources in
two ways:
À by means the f1 and f2 terms (linearly amplifies the

corresponding mode);
À by means the exponential therms, which have

coefficients that depend on ε^
m and on the initial

conditions on the capacitors. If the mode is located
within the unstable band of the dispersion curve,
then the respective mode will develop (it
corresponds to an eigen-value with positive real
part). If the mode is located “outside” the
dispersion curve, then it will decrease to zero (it
corresponds to an eigen-value with negative real
part).

The solution is:

The solutions can be put into the form:

The behavior of this system will follow the rules:

À modes “inside” the dispersion curve will be
“favored” by the network. Due to the fact that the
coefficients am, bm, cm and dm depend on spatial
signal generated by bias current sources, the modes
from the spatial signal that are located inside the
dispersion curve will increase, too.;

À all modes of the spatial signal made by bias current
sources will be “amplified” with an Amu.

4  Computer simulations

In this part some significant simulation results are
presented. First of all, we verify the first rule
mentioned above. We make that by choosing a network
whose dispersion curve is located under the x-axis and
consequently there are not any modes located “inside”
the dispersion curve. A set of parameters which satisfy
these rules is: fu=0.1, fv=-1, gu=0.1, gv=-0.2, Du=1,
Dv=10, γ=1, M=30. We use a signal generated by bias
current sources that has only one spatial mode in its
spectrum: mode 5. The amplitude of the mode will be
initially 0.1. According to the first rule mentioned
above, the mode 5 will be amplified with 4.9.

Fig. 1: Final pattern

The final “pattern” is represented in the Fig. 1.
The second simulation presents a phenomenon related
to the second rule described above. The dispersion

curve will have inside two modes: 4 and 5.
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The parameters are the same, except Dv=50 and γ=5.
The corresponding dispersion curve is represented in
Fig. 2.

Fig 2: Dispersion curve

We seed the network with spatial mode 4 of amplitude
0.1 on the u-nodes capacitors and the spatial signal
made by the bias sources will have only the spatial
mode 2 of amplitude 0.01 in its spectrum. The final
pattern is represented below, in Fig. 3.

Fig. 3: The final pattern

The corresponding spectrum of final pattern is
displayed in Fig. 4.

Fig. 4: The spectrum of final pattern

If one increases the amplitude value of spatial mode a
different pattern is obtained. Let us set it to 0.05. Final
pattern is represented below, in Fig. 5.

Fig. 5: Final Pattern

The spectrum is also represented in Fig. 6:

Fig. 6: The spectrum of final pattern

Let us notice that mode 2 has “grown” five times,
corresponding to the growth of the “initial condition”
imposed for the spatial signal source generated by bias
current sources from 0.01 to 0.05. If the amplitude of
that mode is increased more (0.1) then the final pattern
will look like in the figure below:

Fig. 7: Final pattern

Spectrum analysis allows us to make an interesting
observation: the spatial signal on the state variables
(capacitors) corresponding to the "classical" initial
conditions has been disappeared due to the “growth” of



the mode introduced through the spatial signal
generated by bias current sources:

Fig. 8: The spectrum of final pattern

It can be easily noticed that there is only the mode 2 in
the spectrum and the harmonics generated by the non-
linearity.
The last experiment we do corresponds to the following
situation: we seed one mode that is located "inside" the
dispersion curve on the capacitors and one mode that is
located "inside" the dispersion curve on the bias current
sources of each cell. The same parameters for the
network will be used, except the parameter γ which will
be increased. By this increase, the dispersion curve will
move significantly to the right. The dispersion curve is
represented in Fig. 9.

Fig. 9: Dispersion curve

The modes located "inside" the dispersion curve are
displayed in the following table:

Table 1: Real part of the positive eigenvalues

Modes Real(eigenvalue)
8 0.2061
9 0.3331
10 0.3713
11 0.3471
12 0.2777
13 0.1752
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14 0.0483

Mode 12 is seeded on the capacitors. It has an
amplitude of 0.1. Mode 13 is seeded on the bias current
sources with an amplitude of 0.1.
The final pattern obtained is represented in Fig. 9.

Fig. 9: Final pattern

Its spectrum is represented below, in the Fig. 10:

Fig. 10: The spectrum of final pattern

5  Conclusions

In the presented paper a new pattern control type is
studied. Beside the control using the dispersion curve
and the initial conditions imposed on capacitors, we
propose another type of control using the values of the
bias current source of each cell. The implementation
cost should not increase significantly compared to the
case when all the current sources have one fixed value.
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