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ABSTRACT – Several new boundary conditions are studied for 2D CNN’s. Spatial 
eigenvectors and eigenvalues allowing the use of the differential equations decoupling are 
presented and computer simulations are given. 

  
1.  Introduction 
 

Recent investigations [1-4] showed that, in certain conditions, CNNs based on second order cells produce 
patterns due to a reaction-diffusion mechanism similar to that proposed by Turing [5] to model morphogenesis.  

For piece-wise non-linear characteristics of the cell resistors the first part of the transient towards a pattern 
(a stable equilibrium point [6]) certain predictions of the final pattern using the mode decoupling technique 
described in [3] are possible. Even though the theory the predictions are based on is linear the power of the 
decoupling technique is surprisingly good. Experimental results showed that such predictions are more reliable 
in the 1D case. In 2D case the results obtained using the decoupling technique are better when few modes fall 
inside the dispersion curve i.e, are unstable. As it is well known, boundary conditions may influence more or 
less the final pattern. In this communication, 2D eigenvectors and eigenvalues corresponding to a large class of 
boundary conditions are given and simulation results are presented. 
  
2.  Eigenvectors and Eigenvalues 
 

Beside the classical ring and zero-flux, eight new BC have been presented in [7] for the 1D case. Even 
though other boundary conditions can be invented as well, their main feature is that analytic expressions for the 
eigenvectors and the corresponding eigenvalues have been found, allowing the use of the decoupling technique 
[3] to predict the final pattern. It became apparent that changing the boundary conditions, a certain control of 
the final pattern may be introduced, especially in the case of small arrays. Extensions to the 2D case is even 
more interesting due to the high number of possible combinations for the four sides of the array. Indeed, each 
combination of the 1D boundaries for each side or the array is possible. The boundary conditions in the 2D case 
will be ring, zero-flux, anti-zero- flux, quasi-zero-flux, zero, and combinations of the above on various sides of 
the array.  

Denoting by km, kn and kmn the spatial eigenvalue for the 1D respectively 2D cases and by φM, φN and φ
MN(m,n;i,j) the corresponding eigenfunctions, the following relationships are satisfied: 
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where M and N are the two dimensions of the array and the spatial modes have been numbered from 0 to N-1 
and M-1. 

From the above relations it is apparent that, for a given dispersion curve corresponding to a particular 
choice of the cell and diffusion parameters, the number and the position of the unstable modes can be controlled 
by using various combinations of boundary conditions. Compared to the one-dimensional case, the number of 
possibilities is obviously much greater and the controlling method is more efficient in the case of small 
dimensional arrays. 

In the table below we give examples of the eigenvectors and eigenvalues for several boundary conditions 
(same for the u and v “layer”). 

 Boundary conditions Eigenvectors Eigenvalues 
Anti-zero-flux 
on all 
boundaries 

u(-1,j)=-u(0,j) 
u(M,j)=-u(M-1,j) 
u(i,-1)=-u(i,0) 
u(i,M)=-u(i,N-1,j) 
analogous for v 
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Zero on all 
boundaries 

u(-1,j)=0 
u(M,j)=0 
u(i,-1)=0 
u(i,N)=0 
analogous for v 
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Quasi-zero-flux 
on all 
boundaries 

u(-1,j)=u(1,j) 
u(M,j)=u(M-2,j) 
u(i,-1)=u(i,1) 
u(i,N)=u(i,N-2) 
analogous for v 
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Quasizero-flux-
quasizero-flux 
zero-zero 

u(i,-1)=u(i,1) 
u(i,N)=u(i,N-2) 
v(i,-1)=v(i,1) 
v(i,N)=v(i,N-2) 
u(-1,j)=0 
u(M,j)=0 
v(-1,j)=0 
v(M,j)=0 
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Zero-zero-flux: 
antizero-flux-
quasi-zero-flux 

u(i,-1)=0 
v(i,-1)=0 
u(i,N)=u(i,N-1) 
v(i,N)=v(i,N-1) 
u(-1,j)=-u(0,j) 
v(-1,j)=-v(0,j) 
u(M,j)=u(M-2,j) 
v(M,j)=v(M-2,j) 
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Table 1: Eigenvectors and their corresponding spatial eigenvalues 

3.  Computer simulation results 
 
3.1  Eigenvectors and eigenvalues 
 

In the following, several simulations for various boundary and initial conditions are given. The parameters 
of the array and cells (Fig.1) are: M=N=5, G1=G2=-1, E2=-E1=1, fu=-(G+G0)=0.4, fv=G=1/R=1.0, gu=Cu(G-

g)/Cv=-0.25, gv=-CuG/v=-0.5, γ=1/Cu=15, Du=Gu/Cu=1.0, Dv=Gv/Cv=3.8 and Dv=3.3 respectively (Gu and Gv are 
the conductances values of the two resistive grids). The dispersion curves for the two cases (Dv=3.8 and Dv=3.3) 
are characterized by peak at 1.77415, k1

2=0.968037, k2
2=3.05828, Dvcrit =3.27254, kcrit=1.8541 and peak at 

1.84915, k1
2=1.61056, k2

2=2.11672 respectively. The property that Dv roughly moves vertically the dispersion 
curve is apparent from the fact that the band of unstable modes is significantly narrower in the second case. 

 

Figure 1: The cell 

In the tables below the unstable modes and corresponding real parts of the temporal eigenvalues for Dv=3.8 
and Dv=3.3 respectively and various types of boundary conditions are given: 

Dv=3.8 Azf-Azf: 
Azf-Azf 

Z-Z:Z-Z Qzf-Qzf: 
Qzf-Qzf 

Qzf-Qzf: 
Z-Z 

Z-Zf: 
Azf-Qzf 

m=0, n=1 Re(λ)=0.378 Re(λ)=0.260 -------------- Re(λ)=0.039 Re(λ)=0.124 
m=0, n=2 Re(λ)=0.028 Re(λ)=0.307 Re(λ)=0.362 Re(λ)=0.362 Re(λ)=0.261 
m=0, n=3 -------------- -------------- -------------- Re(λ)=0.028 --------------- 



m=1, n=0 Re(λ)=0.378 Re(λ)=0.260 -------------- -------------- --------------- 

m=1, n=1 Re(λ)=0.134 Re(λ)=0.362 Re(λ)=0.199 Re(λ)=0.365 Re(λ)=0.376 
m=1, n=2 -------------- Re(λ)=0.028 Re(λ)=0.205 Re(λ)=0.206 Re(λ)=0.010 
m=2, n=0 Re(λ)=0.028 Re(λ)=0.307 Re(λ)=0.362 Re(λ)=0.307 Re(λ)=0.377 
m=2, n=1 -------------- Re(λ)=0.028 Re(λ)=0.205 Re(λ)=0.028 Re(λ)=0.155 
m=3, n=0 -------------- -------------- -------------- -------------- Re(λ)=0.051 

Table 2: Unstable modes for Dv=3.8 

 
Dv=3.3 Azf-Azf: 

Azf-Azf 
Z-Z:Z-Z Qzf-Qzf: 

Qzf-Qzf 
Qzf-Qzf: 

Z-Z 
Z-Zf: 

Azf-Qzf 
m=0, n=1 Re(λ)=0.019 -------------- -------------- ------------- ------------- 

m=1, n=0 Re(λ)=0.019 -------------- -------------- ------------- ------------- 

m=1, n=1 -------------- Re(λ)=0.014 -------------- ------------- Re(λ)=0.013 
m=0, n=2 -------------- -------------- Re(λ)=0.014 Re(λ)=0.015 ------------- 

m=2, n=0 -------------- -------------- Re(λ)=0.014 ------------- Re(λ)=0.022 

Table 3: Unstable modes for Dv=3.3 

We emphasize that the tables above contain the real parts of the unstable modes only. It is easy to see that, 
due to the decrease of the width of the unstable band with the decrease of Dv, the number of unstable modes in 
the second case is smaller.  

3.2  Patterns 

Three different types of initial conditions have been used: 
• random with a maximum 0.01 amplitude; 
• single mode deterministic with a maximum 0.01 amplitude; 
• combinations (sum) of the above, having as deterministic part one component of  0.01 and as 

random a  0.01 percent from the maximum amplitude of deterministic one. 
In the first set of simulations Dv=3.8 and random generated initial conditions and have been used. The 

results for various types of boundary conditions are presented in Figures 2-6. Even though, due to the non-
linearity of the cells, the final pattern is not “pure”, the winner-modes are generally those which have the 
greatest real part for the temporal eigenvalue. However, as the spectral composition of the computer-generated 
noise is not constant, exceptions appear. This is the case of the results presented in Figures 5 and 6 when the 
modes m=1, n=1 respectively m=2, n=0 were expected and modes m=2, n=1 respectively m=1, n=1 were 
obtained.  

The results presented in Figures 7-12 have been obtained with deterministic initial conditions for two values 
for parameters of Dv, in order to reflect the possibility of controlling the appearance of a pattern by using the 
boundary conditions. In Figures 7 and 12 the modes m=1 and n=1 for both values of Dv for the azf-azf:azf-azf 
boundary conditions have been used as initial conditions. From the two tables it is apparent that, in the case of 
Dv=3.3, no pattern should appear as the initialized mode was not in the band of unstable modes. Similar 
simulations have been done for the cases z-z:z-z, qzf-qzf:qzf-qzf, qzf-qzf:z-z and z-zf:azf-qzf boundaries, with 
modes (m=1, n=0), (m=1, n=2), (m=1, n=1) and (m=3, n=0) respectively. For Dv=3.8, the patterns were those 
predicted by the linear theory while for Dv=3.3, again according to linear theory predictions, there were no 
patterns as the initial conditions modes were not in the band of unstable modes (Fig. 12).  

The results of the last set of simulations have been obtained using a sum between deterministic and random 
initial conditions for the case Dv=3.3.  They are presented in Figures  13-17. We used the same deterministic 
components (with an amplitude of 0.01) as like for the simulations presented in Figure 12 and in addition, a 
level of 0.01% pseudo-random noise (generated with random() in C). The patterns corresponding to 
deterministic mode will not develop but generally, patterns obtained in Figures 2-6 will appear. An exception 
for qzf-qzf:z-z boundary appears, but, due to the fact that there is a single mode in the band of instability for 
Dv=3.3, a “clean1” pattern occurs. For the pseudo-random generated IC’s in Dv=38’s case, there was more than 

                                                   
1 We mean by “clean” a pattern whose spectrum has only one mode 



one mode in the band of instability (with similar real parts) and derived from that, the pattern obtained was not 
a “clean” pattern.     
 

4.  Concluding remarks 
 

Several new types of boundary conditions including analytical expressions for eigenvectors and eigenvalues 
have been given for the case of 2D Turing patterns producing CNN’s. Computational results confirm the 
validity of theoretical results and the possibility of controlling patterns by means of choosing appropriate 
boundary conditions.  
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Figure 2: azf-azf:azf-azf, Dv=3.8, u side 

 
Figure 3: z-z:z-z, Dv=3.8, u side 

 
Figure 4: qzf-qzf:qzf-qzf, Dv=3.8, u side 

 
Figure 5: qzf-qzf:z-z, Dv=3.8, u side 

 
Figure 6: z-zf:azf-qzf, Dv=3.8, u side  

Figure 7: azf-azf:azf-azf, Dv=3.8, Det (1,1), u side 

 

Figure 8:z-z:z-z, Dv=3.8, Det (1,0), u side, 

 

Figure 9: qzf-qzf:qzf-qzf, Dv=3.8, Det (1,2), u side 



 

Figure 10: qzf-qzf:z-z, Dv=3.8, Det (1,1), u side 

 

Figure 11: z-zf:azf-qzf, Dv=3.8, Det (3,0), u side 

 
Figure 12: azf-azf:azf-azf, Dv=3.3, Det (1,1); 

z-z:z-z, Dv=3.3, Det (1,0); 
qzf-qzf:qzf-qzf, Dv=3.3, Det (1,2); 

qzf-qzf:z-z Dv=3.3, Det(1,1); 
z-zf:azf-qzf Dv=3.3, Det(3,0), u side 

 

Figure 13: azf-azf:azf:azf, Dv=3.3, 0.01%rand+Det 
(1,1), u side 

 

Figure 1: z-z:z-z, Dv=3.3, 0.01%rand+Det (1,0), u 
side 

 

Figure 15: qzf-qzf:qzf-qzf, Dv=3.3, 0.01%rand+Det 
(1,2), u side 

 

Figure 16: qzf-qzf:z-z, Dv=3.3, 
0.01%rand+Det(1,1), u side 

 

Figure 1: z-zf:azf-qzf, Dv=3.3, 0.01%rand+Det 
(3,0), u side 

 


