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Abstract 
Within linear theory, Turing patterns in CNN’s can be viewed as the consequence of a competition 
between unstable spatial modes. The aim of this communication is to show that the final pattern 
might depend on the relative position (phase) of the competing modes – a result that cannot be 
explained using the mode decoupling linear theory.  

INTRODUCTION 

The two-grid coupled Cellular Neural Networks (CNN’s) architecture [1-11] has been shown to be capable 
to produce Turing patterns on the basis of a mechanism similar to that proposed by Turing [14]. Composed 
of identical cells identically coupled by means of two homogeneous resistive grids, such CNN’s exhibit an 
unstable homogeneous equilibrium point, which corresponds to a stable one for an isolated cell. The 
pattern is one of the stable equilibrium points towards which the network emerges. The linearized equations 
governing the dynamics of the array have the form: 
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where fu, fv, gu, gv refer to the linearized two-port resistive characteristics (elements of the Jacobian matrix 

of f(u,v) and g(u,v) of the nonlinear equations), Du and Dv are the diffusion coefficients and ∇ 2
 is the 

discrete Laplacian. The Turing conditions [3-8], that have been shown to be only necessary for discrete 
arrays, are: 
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Within linear theory, Turing Patterns in CNN’s are dependent on the following aspects: 
a – fulfillment of Turing conditions,   

b – dispersion curve,  

c – initial conditions, 

d – biasing sources signal [3] 
Beside, the shape of the nonlinear characteristic of the cell resistor influences the pattern as well but this is 
an aspect that cannot be consider within the above theory. However, it has been shown that the results of 
the linear theory fit well with the simulations mainly for 1D arrays. In such cases, the final pattern can 
usually be predicted taking into consideration the above aspects, which means that the nonlinearity (fu(u) in 
most cases – as shown in Fig.1.) plays mainly the role of limiting the growing process of the unstable 
spatial modes. 

Fig. 1: A typical cell non-linear characteristic 
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Using the decoupling technique, i.e., the change of variable 
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i=0,1,…,M-1, where the functions Φ M m i( , )  are dependent on the boundary conditions as shown in [5]  

In terms of the new variables, the dynamics of the CNN is described by the following set of pairs of 
decoupled linearized equations 
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The general form of the transient expressed in terms of the decoupled variables [9]  
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where λm1 and λm2 are the roots of the characteristic equations  
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and f1 and f2 are [9] 
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The time domain solution of the 1-D linearized CNN equations is thus 
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For ring boundary conditions, the orthogonal basis of functions is:  
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The dispersion curve represents the real part of the temporal eigenvalues versus the spatial eigenvalues.  
A typical dispersion curve is represented in the figure below: 
 
 
 
 
 



Fig. 2: A typical dispersion curve 

For the situation in the figure, there are two “active” modes: 4 and 5. We say that they are “inside” the 
dispersion curve, i.e. they have eigenvalues with positive real parts. 
When using non-homogeneous spatial bias current sources, the “spatial signal” made by bias current 
sources influence the solution. We stress the fact that the functioning point is before entering the non-linear 
part of each cell’s characteristic. 

PHASE INFLUENCE ON MODE COMPETITION  

For initial conditions consisting of two pure spatial modes the technique of decoupling the differential 
equations predicts a race between the spatial modes which depends on their weight in the initial conditions 
and on the magnitude of the (positive) real parts of the corresponding temporal modes. The relative position 
of the two spatial modes is irrelevant within the linear theory. This statement is true as far as the 
amplification conditions for one mode are much more favourable than for the other one (in terms of 
amplitude ratio and eigenvalue real parts) [10-13]. 
However, when the competition is “tight”, it has been found that the relative position (phase) of the two 
competing modes can influence the final pattern. 
The simulations have been done with the following parameters: 

1D 
size 

fu fv gu gv gamma du dv 

50 0.4 1 -0.25 -0.5 1 1 10 

Parameters deduced from the dipersion curve: 

peak k1 k2 Dvcrit kcrit m=1 (IN) m=2 (IN) m=3 (IN) m=4 (IN) 

0.14864@ 

0.09325 

0.01492 0.33508 3.2725 0.1236 0.0096@ 

0.0158 

0.1401@ 

0.0628 

0.1371@ 

0.1404 

0.0705@ 

0.2474 

The phase influences the final pattern in the non-linear way. That means we cannot say anything regarding 
the final pattern taking into account only the evolution in the linear part when we are talking about the 
influence of the phase.  
In order to prove the above-mentioned statements, we seed the network with the sum between mode 3 of 
amplitude 0.1 and phase pi/10 and mode 2 of amplitude 0.0905. The initial state, the evolution of the initial 
state to the final pattern and the final pattern are represented in the figure below. 
From the table it can be easily seen that mode 2 has the biggest real part for the temporal eigenvalue. 
Despite this, mode 3 will “win” the competition in the non-linear part. This is because of the influence of 
the phase:  



Fig. 3: Initial state, Evolution to the final pattern, final pattern 

In the second experiment, we seed the network with mode 3 and 2 of the same amplitude. The phase of the 
mode 3 is now pi/54. The result is that mode 2 will win the competition for phase smaller or equal than this 
value: 

Fig. 4: Initial state, Evolution to the final pattern, final pattern 

Moreover, the position of the “breaking points” in the cell’s characteristic does matter. 

The left “breaking point” in the non-linear part of the cell’s characteristic is –1 and the right “breaking 
point” is changed from 1 to 10. The phase of the mode 3 is zero in the following experiment: 

Fig. 5: Initial state, Evolution to the final pattern, final pattern 

We change the phase to pi/5500. The result can be seen in the figure below: 

Fig. 6: Initial state, Evolution to the final pattern, final pattern 

From the Fig. 6 (final pattern) it can be seen that mode 2 distorted “wins” the competition.  

 



Then we eliminate the distortion of the winner (mode 2) by changing the phase of the mode 3 to pi/10: 

Fig. 7: Initial state, Evolution to the final pattern, final pattern 

In the next four experiments, we will emphasize another important aspect: it is possible to obtain a new 
different pattern corresponding to a different mode from the mode(s) with which we seed the network. The 
importance of the phase will be stressed, too. We will seed the network with a sum between modes 1 and 4 
with different amplitudes.  
First, we use amplitude of 0.3 for mode 1 and 0.01 for mode 4. The phase is zero. Mode 2 will win the 
competition. Remark: in the initial spectrum composition: there wasn’t mode 2 at all. This is up to the non-
linearity. 

Fig. 8: Initial state, Evolution to the final pattern, final pattern 

Then we change the amplitude of mode 1 to 0.2. The rest will be unchanged. Another mode that wasn’t 
present in the initial spectrum wins the competition: mode 3: 

Fig. 9: Initial state, Evolution to the final pattern, final pattern 

By slightly changing the amplitude of mode 1 to 0.1968, we obtain the pattern corresponding to the mode 
4: 

Fig. 10: Initial state, Evolution to the final pattern, final pattern 

 



Mode 3 can be obtained by changing the phase of mode 4 from 0 to pi/10: 

Fig. 11: Initial state, Evolution to the final pattern, final pattern 

CONCLUDING REMARKS 

In this work we have experimentally proved that the phase in a second order cell CNN can be crucial in the 
mode competition for Turing Pattern formation. For these situations the prediction of the final pattern 
according to the previous works based on mode decoupling techniques cannot be obtained. Moreover, new 
modes, other then the ones seeded into the network can appear as winners in the final pattern. 
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