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Abstract - The dynamics of a class of Cellular Neural 
Networks (CNN’s) related to pattern formation is investigated 
in the central linear part using the decoupling technique based 
on Discrete Spatial Fourier Transform. The influence of the cell 
order and template neighborhood is discussed as well 
 

I. Introduction 
CNN’s - homogeneous arrays of identical cells 

identically coupled - have been intensely 
investigated in the last decade for their 
applications in fast image processing [[1-9]. The 
standard CNN [1] consists of an input source, an 
RC parallel circuit, a biasing source and a 
nonlinear controlled source, which converts the 
state of the cell into the output. The state of each 
cell is determined by the outputs and inputs of the 
neighboring cells - within prescribed radius - 
through controlled sources. The image to be 
processed is introduced through the input and/or 
the state of the cells, each cell of the array 
corresponding to a pixel of the image. 

An interesting phenomenon [10-17], which has 
been shown to appear in CNN’s, is pattern 
formation.In this communication, the dynamics in 
the central linear part of a class of 1D CNN’s will 
be investigated emphasizing the influence of the 
cell order and the template neighbourhood radius. 
The M CNN cells are supposed to be nonlinear 
(piecewise linear) dynamic one-ports, which for 
the central linear part behave linearly as a one-
port admittance Y(s) as shown in Fig. 1. When the 
system is unstable, the evolution of the CNN is 
supposed to be stopped before some nonlinear 
mechanism would limit the growth of the signals. 

 

 
Fig. 1. 1D CNN model for the central linear part 

 
  The CNN is described, by the following set of 
differential equations: 
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where s=d/dt, N is the neighborhood radius and Ak 
and Bk characterize the connection with 
neighboring cell outputs and the input sources 
Ji(t), respectively. The two templates are 

supposed to be of the same dimensions but this is 
not a restriction as part of the coefficients can be 
zero. 
 
II. Solving the equations 
Using the decoupling technique, i.e., the change of 
variables. 

i=0,1,…,M-1, with eigenfunctions ΦM(i,m) of the 
form (ring BC’s) 

 

in the general case, the action of the A-template 
(similar relations are valid for the B-template) 
gives: 

where: 

The positions of the eigenvalues KA(m) for 
several templates corresponding to first and 
second order neighborhoods are given in Fig. 2. 

 
Fig.2. Eigenvalues positions in the complex plane for 

several second order templates. 
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With the above change of variables and taking 
successively the scalar product with F M(i,m) of 
both sides, the equations decouple. Thus, each 
spatial mode, m, is characterized by the 
differential equation 
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and the transfer function 
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where Y(s)=Q(s)/P(s), P(s) and Q(s) being 
polynomials in the variable s.  

The decoupling technique allows the study of 
the CNN dynamics based on the time evolution of 
each spatial mode. The stability and dynamics of 
each spatial mode are determined by the zeros of  
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.Taking advantage of the special form of this 
equation, the dynamics of the CNN can be studied 
using techniques from feedback theory like the 
Nyquist criterion adapted for complex 
amplifications as, in the general case of 
asymmetric templates, (Ai≠A-i) KA(m) is complex 
and satisfies the condition KA(m)=K*

A(M-m). 
Indeed, the stability depends on the relative 

position of KA(m) with respect to the hodograph of 
Q(s)/P(s) for s belonging to the Nyquist contour. 
The stability of the modes is determined by the 
number of times KA(m) and K*

A(m). are circled by 
the hodograph of Y(s): the shape of the hodograph 
of Y(s) gives the influence of the cell on the 
dynamics while the template influence is given by 
the position of the eigenvalues with respect to the 
hodograph. An example is given in the figures 
below for a CNN made of cells with admittance: 
Y(s)=(s2+s+1)/(s+1), A=[0.5,0.5,0.5,0.5,-0.5], 
J(t)=0. For random initial conditions, the time 
evolution shows that the winning mode is m=1 
which corresponds to complex conjugated 
temporal eigenvalues, so that the dynamic is 
oscillatory. 

 

 

Fig. 3 a. Hodograph of Y(s) and spatial eigenvalues b. 
Output evolution for random IC 

In the following we will consider first-order cell 
CNN’s for which the Nyquist hodograph 
corresponding to the imaginary axis is a vertical 
line as Q(s)/P(s)=s. Thus, the roots of the 
characteristic polynomial will be identical with the 
spatial eigenvalues, ?m=KA(m). When M=2N+1, 
i.e., any cell is coupled with all other cells, 
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the template coefficients and the temporal 
eigenvalues are Discrete Fourier Series pairs. 
Based on this observation, the design of a 
template which produces a prescribed 
configuration of the spatial modes temporal 
eigenvalues resides in solving an inverse DFS 
using perhaps the FFT algorithm. On the other 
hand, such large templates are impractical for a 
possible implementation. 

Reducing the template dimension leads to the 
modification of the initial temporal eigenvalues 
positions. Formally, using a smaller template (M > 
2N+1) is equivalent to the use of a 2N+1 constant 
window, which corresponds to a convolution in the 
eigenvalues domain with the function: 
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which represents the eigenvalues positions for a 
constant negative window-type template.  

Two particular cases are presented below for a 
CNN with M=31. The figures represent the 
envelope of the real part of the eigenvalues 
(which, in this case are real) and their values. 
 

 
m=0 -5 m=8 1.10
m=1 -4.80 m=9 1.25
m=2 -4.21 m=10 1.10
m=3 -3.34 m=11 0.72
m=4 -2.28 m=12 0.21
m=5 -1.18 m=13 -0.31
m=6 -0.18 m=14 -0.73
m=7 0.60 m=15 -0.97 

 

 
m=0 -29 m=8 1.38 
m=1 -1.99 m=9 -1.22 
m=2 1.96 m=10 1.06 
m=3 -1.91 m=11 -0.88 
m=4 1.84 m=12 0.69 
m=5 -1.75 m=13 -0.50 
m=6 1.64 m=14 0.30 
m=7 -1.52 m=15 -0.10  

Fig. 4 Envelope and eigenvalues for  N=2 and N=14 
Using the constant window template 

corresponds to a kind of comb filter: successive 
spatial modes will have alternatively stable and 
unstable behaviour, according to the shape of 
transform of the constant window. The modes with 
positive real part will develop while those with 
negative real part will attenuate with time 

 
 



The mechanism is illustrated in the figure below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The simulation results are given below with N=2 

and different types of initial conditions A=[-0.0323 -
0.0323 -0.0323 -0.0323 -0.0323] 

 

 
a) ?4<0 

 

 
b) ?8>0 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
c) ?14<0 

 

 
d) Random initial conditions 

 
 
III. Concluding remarks 
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Fig. 4. Reducing the template neighborhood 

Fig. 5. Time evolution for several spatial modes 



In this work, several analytical results 
concerning the dynamics of CNN and pattern 
formation have been presented. They are based 
on the decoupling technique, which, although 
intrinsically linear, give significant insight for 
pattern formation. The method has been combined 
with the Nyquist techniques and puts into evidence 
the dynamics of the CNN with respect to the 
Fourier components of the input and initial 
conditions for ring boundary. 
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