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Abstract – Second order cell CNN's with first order
neighborhoods have been thoroughly studied mainly for
their capability to produce Turing patterns. In this
communication it is shown that such systems may
exhibit an oscillatory behavior as well. Using the
decoupling technique valid for the central linear part of
the cell characteristics, analytical conditions for the
above oscillatory behavior have been derived.

1 Introduction

Cellular Neural Networks made with second order
cells were introduced [1-4] as special systems capable
of producing Turing patterns. The main feature of
such a behavior is that, in certain conditions, using
stable identical cells, the network built through their
identical connection could have the homogeneous
equilibrium point unstable but exhibit
nonhomogeneous stable equilibrium points (patterns).

Although the dynamics of CNN's is basically
nonlinear, significant insight regarding their behavior
has been obtained using a decoupling technique [ ]
valid for the central linear part and related to the so-
called dispersion curverepresenting the real part of
the system’s eigenvalues vs. spatial eigenvalues or vs.
spatial modes. A necessary condition for pattern
formation is that the dispersion curve has positive
values for at least one spatial mode.

The cell parameters and the template ones
characterize any CNN. Cell parameters will be used to
shape the dispersion curve vs. spatial eigenvalues
while the template parameters will select the position
and width of a "window" under the dispersion. A
typical dispersion curve vs. eigenvalues as well as vs.
modes is represented in Fig.1. The behavior of the
CNN depends on the part of the dispersion curve
windowed according to the template coefficients.

An important aspect that has not been considered so
far (in previous papers only the real part of the
temporal eigenvalues was used) is the influence of the
imaginary parts of the eigenvalues which characterize
the oscillatory behavior of the spatial modes.

2 Theoretical background

In the following we consider two-port cells
connected by means of two identical first order
neighborhood templates. In the central linear part, the
CNN is described by the following set of equations
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where fu, fv, gu, gv andγ characterize the cell resistive
and capacitive parts Du and Dv are scale factors and
O1D describes the template:

(2)
which, in the following will be considered symmetric,
i.e., B=C.

Figure 1 a) Dispersion curve vs. spatial eigenvalues
b) Dispersion curve vs. modes obtained from a)
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Using the decoupling technique, based on the
change of variable:
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and considering ring boundary conditions, the
spatial eigenfunctions are of the form:

(4)

whereω(m)=2πm/M and ϕ(m) can have any value.
It is easy to show that the corresponding spatial
eigenvalues are:

(5)
and the dispersion curve for a CNN with different
templates for the u and v layers is:

(6)

There are three zones in Fig. 1 corresponding to
distinct real roots, and to complex conjugated roots
(middle).

The above dispersion curve shows the possibility of
various types of dynamics according to the shape of
the curves and the position of the of the eigenvalues
windows.

The relevant points of the dispersion curves for
K1D=K1D’ are:

1. The extremities of the zone where the eigenvalues
are complex conjugated:

(7)

2. The width of the middle zone:

(8)

3. The coordinates of the middle zone center:
(9)

and
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The necessary condition for the middle zone to exist
is that the product fvgu have negative sign so that
K1Dleft and K1Dright be real numbers. In the limit, when
fvgu=0, there is only one value K1D for which the
temporal eigenvalues are complex conjugated.

4. When Du≠-Dv there are two extreme points, a
maximum and a minimum, each on the two branches
of the dispersion curves.

(11)

The curve of the imaginary parts of the eigenvalues
(when they exist) is:

(12)

3. Oscillatory behavior

In the following we will consider a particular case of
the dispersion curve characterized by a middle zone
positioned on the horizontal axis as shown in Fig.2.
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Figure 2: Dispersion curve for the particular case
γ=5, fu=-0.1, fv=-0.1, gu=1, gv=0.1, Du=1, Dv=-1,

M=30
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The imaginary part is represented in Figure 3.
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Figure 3: The imaginary parts of the temporal
eigenvalues vs. spatial eigenvalues

Let us observe that, choosing part of the mode
window in the horizontal part of the characteristic,
these modes will be placed on the imaginary axis at
values given by the curve in Fig. 3. As the center of
the window is determined by A and its width by B, it
is possible to chose the template so that all eigenvalus
be on the imaginary axis. In this care, the spatial
harmonics of the signal represented by the initial
conditions will oscillate in time with frequencies
determined by the imaginary part of the dispersion
curve.

The imaginary part can be practically the same for
all modes when the window width i.e., B is small.
This corresponds to a practically horizontal part of the
imaginary curve and, in the same time to weakly
coupled cell. In particular, placing the center of the
window at
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Figure 4: The imaginary part of the temporal
eigenvalues for first situation (A=0.5, B=0.01)
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the extreme values of the imaginary parts vugfγ± ,

the frequencies of oscillations can be almost identical.
Another case of interest is that when the eigenvalues

have an important variation within the window. This
situation can be obtained choosing the window
towards the extremities of the middle part of the
dispersion curve. The sign of B determines the order
of the eigenvalues when passing from eigenvalues to
modes. The representations of the imaginary parts of
the temporal eigenvaluesvs. modesfor two cases is
given in Figs. 5 and 6.
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Figure 5: Imaginary parts of the temporal eigenvalues
for A=-0.88 and B=0.1
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Figure 6: Imaginary parts of the temporal eigenvalues
for A=-0.88 and B=-0.1



4. Simulation results

The simulation in Fig. 7 corresponds to temporal
eigenvalues almost identical, as in Fig. 4. The initial
conditions were the sum of modes 3 and 13, both with
amplitude 0.1.
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Figure 8: Time evolution of the pattern for system corresponding to the dispersion curve represented in Fig. 5

Figure 7: Time evolution of the pattern for system corresponding to the dispersion curve represented in Fig. 4


