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Abstract - In this communication comparatives study
of the dynamics of first order cell - second order
neighborhood and second order cell – first order
neighborhood CNN’s is presented.

The comparison is made in terms of the dispersion
curve, which is based on the decoupling technique and
valid for the central linear part of the piecewise linear
cell characteristics..

1 Introduction

Since their invention [1-5] many significant results
regarding the CNN behavior have been obtained. One
of the methods for patterns studying and filtering
capabilities makes use of the decoupling technique,
which is valid for dynamics, restricted to the central
linear part of the cell characteristics. This method is
fundamentally linear and has been applied for the
study of the linear filtering properties of the first order
cell and second order neighborhood template as well
as for the pattern formation in second order cell first
order neighborhood template. The aim of this
communication is to make a comparison between the
two kind of CNN;s, using the decoupling technique
and the dispersion curves [6]. The main idea of the
above technique is to use a change of variable based
on a system of orthogonal discrete spatial functions
(chosen according to the boundary conditions). The
change of variable leads to a system of pairs of
decoupled linear differential equations having as
variables the spatial spectrum of the node voltages
with respect to the orthogonal spatial functions. The
dispersion curves represent the dependence of the real
part of the system temporal eigenvalues vs. either
spatial eigenvalues or vs. spatial modes (frequencies).

2 First order cell – first order
neighborhood CNN's

In the following we consider a CNN made of first
order cells and first order neighborhood template. The
equations, valid in the central linear part, are:

(1)
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where the operator O1D(ui) depends on the template
coefficients A, B and C:

(2)

andεi stands for the biasing.
For a symmetric template (C=B), the eigenvalues of

the spatial operator O1D associated to the
eigenfunctions

(3)

are real numbers:

(4)

which does not depend on the phaseϕ(m).
In the following, only symmetric templates will be

considered.
Looking for a solution of the form:

(5)

where ΦM(m,i) are the spatial orthogonal functions
and using the same technique as in [6] we obtain the
following set of first order decoupled equations:

(6)

where mε̂ is the spectrum of the biasing signal with

respect to the orthogonal functions.
The above equations have (real) temporal

eigenvalues. Their dependence on the spatial
eigenvalues (dispersion curve) is an affine
relationship:

(7)

(where the operator that takes the real part is
superfluous).

3. Second order cell – first order
neighborhood CNN's

In the following we consider two-port cells
connected by means of two identical first order
neighborhood templates.
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In the central linear part, the CNN is described by
the following set of equations

(8)

whereO1D has the same significance as before.
Using the decoupling technique, by means of the

change of variable:

(9)

It turns out that the spatial eigenvalues are the same
as (4) and the dispersion curve for a CNN with
different templates for the u and v layers is given by
the equation below:

(10)

For identical and symmetrical templates for the two
layers, the spatial eigenvalues K1D and K1D’ have the
same value which is real. The dispersion curves for
such a case are represented in Figure 1.

Figure 1 : The real part of both temporal eigenvalues
versus spatial eigenvalue (same for each layer)

The continuous curve represents the locus of the real
part of the solution with the “+” sign and the dotted
curve represents the locus of the real part of the
solution with “–“ sign.

The curves have three zones:

ÿ� the left-zone, which corresponds to distinct real
roots;

ÿ� the middle-zone (complex-conjugated roots);
ÿ� the right zone, (distinct real roots).
From the above dispersion curve one can see that

various types of dynamics are possible according to
the shape of the curves and the domain of the
eigenvalues.

Several relevant points on the above dispersion
curves are:

a) The extremities of the zone where the eigenvalues
are complex conjugated are:

(11)

b) The width of the middle zone:

(12)

c) The coordinates of the center of the middle zone
of the dispersion curve are:

(13)

and

(14)

From equations (11) and (12) one can easily see that
the necessary condition for the middle zone to exist
(K1Dleft and K1Dright to be real numbers) is that the
product fvgu have negative sign. To the limit if fvgu=0,
there is only one value K1D for which the temporal
eigenvalues are complex conjugated.

d) When Du is different of –Dv there are two
extreme points, a maximum and a minimum, one on
the two branches of the roots of the characteristic
polynomial.

(15)

From the equations above it is obvious that another
necessary condition to have real values is that
fvguDuDv<0.

These points are useful to obtain band-pass
characteristics and band-stop characteristics
respectively.

( )vu
vu

Dmiddle gf
DD

K −
−

−= γ
1

( ) ( )vuuv
vu

Dmiddle DfDg
DD

K −
−

=
2

)Re( 1

γ

}
2

)(

2

)(

22
Re{

)),(Re(

2

2'
11

'
11

'
112,1

uv
DvDuuv

DvDuvu

DD

gf
KDKDfg

KDKDgf

KK

γγ

γ

λ

+
�
�
�

�

�
�
�

� −−−±

+++

=

[ ]
[ ]uvvu

uv
D

uvvu
uv

D

gfgf
DD

K

gfgf
DD

K

right

left

−+−
−

=

−−−
−

=

2)(

2)(

1

1

γ

γ

vu

uv
D DD

gf
K

−
−

−=∆
γ4

1

( )

( ) ��
�

�
��
�

� −++−
−

=

�
�
�

�
�
�
�

� −+−−
−

=

vu

uv
vuuv

vu
D

vu

uv
vuuv

vu
D

DD

gf
DDfg

DD
K

DD

gf
DDfg

DD
K

γ

γ

2

1

1

1

�
�
�

��
�

�

++=

−=++=

)()(
)(

1..0)()(
)(

1

1

iDviviu
i

iDuiviu
i

vODvgug
dt

tdv

MiuODvfuf
dt

tdu

γ

γ

�
�
�

��
�

�

Φ=

−=Φ=

ÿ

ÿ
−

=

−

=
1

0

^

1

0

^

),(

1..0),(

M

m
mMi

M

m
mMi

vimv

Miuimu

-2

-1

0

1
Re(Lambda)

-4 -2 2 4
K1D



The cases corresponding to Du=-Dv and respectively
to the one when DuDv>0.

For both pictures fvgu<0.

Figure 2: An example for the case Du=-Dv, fvgu<0

Figure 3: An example for the case DuDv>0, fvgu<0

e) The real part of the temporal eigenvalue for the
zero spatial eigenvalue is:

(16)

Using the above points, it is possible to design a
CNN with a specified behavior for a given domain of
eigenvalues. The steps to be taken are:
ÿ� Depending of the desired dispersion curve one

choose the parameters of the system using
equations (11-16);

ÿ� One chooses a window, which determine the
parameters A and B (center and width). See (4)

Now it should be clear that the synthesis of CNN
with a specified behavior reduces to the adoption of a
window, which is determined by two parameters A
(center), and B (width).

4. First order cell – second order
neighborhood CNN's

For the central linear part, the set of differential
equations is

(17)

where, for a symmetric template of the form

C B A B C

the spatial operator 2
1

=r
DO is:

(18)

and the spatial eigenvalues are:

(19)

Recalling the result that for the second order cell –
first order neighborhood CNN the eigenvalues are
given by (4), in order to make a comparison between
the various cases we cast (19) in the form:

(20)

where K1D is given by (4) where, once A and B have
been adopted, the parametersα, β and γ can be
determined uniquely in terms ofAr=2, Br=2 andCr=2.

For synthesis purposes the template can be
determined using the following relations:

(21)

With the above notations, the dispersion curve can
be written in the form

(22)
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It has the shape sketched in Figure 4.

Figure 4: Dispersion curve forα=-2, β=5 γ=4

For α<0, the dispersion curve has a maximum and
for α>0, it has a minimum. The extreme values of

(23)

occur for :

(24)

Let us observe thatγ determines the position of the
dispersion curve.

The dispersion curve crosses the x-axis in the
points:

(25)

In order to have at least one mode with positive real
part the following condition should be fulfilled:

(26)

5. Concluding remarks

A comparative study of the dynamics of first order
cell - second order neighborhood and second order
cell – first order neighborhood CNN’s is presented.

The shape of the dispersion curve in terms of K1D

determines the behavior of the two CNN types. They
can be coherently compared on the basis of two
template parameters, A and B which determine the
center and the width of a window that selects the
“active” region of the dispersion curve. From the
synthesis point of view, there are to degrees of
freedom, one concerning the shape of the dispersion

curve (mainly determined by cell parameters) and the
position of a window (determined by the template
parameters)

Both systems allow low-pass, high-pass and band-
pass behavior.

From this point of view (for spatial filtering
applications) CNN’s made with first order cells and
second order neighborhood are easier to use, while
second order cell – first order template exhibit more
complex dynamics. Indeed, such systems can oscillate
in time, a behavior which will be analyzed in a
forthcoming paper.
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