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The stability and dynamics of a class of Cellular Neural Networks (CNN’s) in
the central linear part is investigated using the decoupling technique based on dis-
crete spatial transforms, Nyquist and root locus techniques.

Introduction

Since their invention [1,2], CNN’s - homogeneous arrays of identical and iden-
tically coupled cells - have been intensely investigated for their applications in fast
image processing [3-9].

The standard CNN cell [1] consists of an input source, an RC parallel circuit, a
biasing source and a nonlinear (piecewise linear saturation type) controlled source,
which converts the state of the cell into the output. The state of each cell is deter-
mined by the outputs (A template) and inputs (B template) of the neighboring cells
through controlled sources. The image to be processed with CNN’s is introduced
through the input and/or the state of the cells, each cell of an N by M array corre-
sponding to a pixel of the image.

An interesting phenomenon [10-17], which has been shown to appear in
CNN’s, is that of pattern1 formation - a property that has not been yet enough ex-
ploited.

In this communication, the dynamics in the central linear part of a class of 1D
CNN’s is investigated. The CNN cells are supposed to be nonlinear (piecewise
linear) dynamic one-ports, which for the central linear part behave linearly as a
one-port admittance Y(s) as shown in Fig. 1.

1Pattern will be the name for any stable equilibrium point.



Fig. 1. Sketch of the 1D CNN model for the central linear part.
The CNN is described, in the linear central part, by the set of differential equa-

tions .
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where s=d/dt, N is the neighborhood radius and Ak and Bk characterize the con-
nection with neighboring cell outputs and the input sources Ji(t), respectively.
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Using the decoupling technique, i.e., the change of variables
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i=0,1,…,M-1, with eigenfunctions ΦM(i,m) of the form (ring BC’s)
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in the general case, the action of the A-template gives
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Similar relations are valid for the B-template.

The position of the eigenvalues ( )AK m for several templates corresponding to

first and second order neighborhoods are given in Fig. 2.



Fig. 2. Eigenvalues position in the complex plane for several first and second order
templates.

With the above change of variables, the equations become
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Taking successively the scalar product with ( , )M i mΦ of both sides the

above equations decouple. Thus, each spatial mode, m, is characterized by the dif-
ferential equation
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and the transfer function
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The decoupling technique allows the study of the CNN dynamics based on the
time evolution of each spatial mode. Patterns can be produced by the input when
the CNN is stable and by both the input and the state when at least one spatial
mode is unstable. In such cases the node voltages will grow until limited by some
nonlinear mechanism.

The stability and dynamics of each spatial mode are determined by the zeros of
( )

( )
( ) A

Q s
K m

P s
− . Taking advantage of the special form of this equation, the sta-

bility and dynamics of the CNN can be studied using techniques from feedback
theory, i.e., the Nyquist criterion and the root locus method adapted for complex
amplifications as, in the general case of a asymmetric templates, (Ai≠A-I) KA(m) is
complex and satisfies the condition *( ) ( )A AK m K M m= − .



The Nyquist technique

The use of the Nyquist criterion for mode stability investigation is based on the
observation that the stability depends on the relative position of KA(m) with re-
spect to the hodograph of Q(s)/P(s) for s belonging to the Nyquist contour. The

stability of the modes is determined by the number of times ( )AK m and * ( )AK m
are circled by the hodograph of Y(s). Thus, the shape of the hodograph of Y(s)
gives the influence of the cell on the dynamics while the template influence is
given by the position of the eigenvalues with respect to the hodograph. Several
examples are given Fig.3 for a CNN made of cells with the admitance
Y(s)=(s2+s+1)/(s+1), J(t)=0. As expected, looking at the hodograph and the real
parts of the temporal eigenvalues, the patterns developed from random initial con-
ditions were either mode zero or mode one, oscillating in time (Fig. 3. a-d).

Similarly, in Fig. 3. e,f and Fig. 3. g,h the final pattern are again those predicted
from considerations related to the real part of the temporal eigenvalues calculated
for the central linear part (modes three and four respectively).

a.

Mode Temporal eigenvalues

0 1 -0.5

1 0.93+1.18i -0.62-0.23i

2 0.31+0.95i -0.5-0.36i

3 -0.21-1.17i -0.6+0.58i

4 -0.5-1.5i -0.81+0.59i

5 -0.75+0.97i -0.75-0.97i

b.

c. d.



Mode Temporal eigenvalues

0 0 0

1 0.63 -0.39

2 1.35 -0.57

3 1.75 -0.64

4 1.47 -0.59

5 0 0

6 -0.56+0.9i -0.56-0.9i

7 -0.95+i -0.95-i

e. f.
Mode Temporal eigenvalues

0 -1+i -1-i

1 -0.79+0.98i -0.79-0.98i

2 -0.23+0.7i -0.23-0.7i

3 1 -5

4 1.7 -0.63

5 1.62 -0.62

6 1 -5

7 0.29 -0.22

g. h.
Fig. 3 Hodograph of Y(s) and spatial eigenvalues (a); Spatial modes and their

temporal eigenvalues for 10 cells, A=[-0.5 0.5 0.5 0.5 0.5] (b); Output evolution
for random initial conditions with different seeds (c,d); Modes, temporal eigen-
values and output evolution for random initial conditions for 15 cells, A=[-0.5
0.5 1 0.5 -0.5] (e,f) and A=[-0.5 –0.5 1 –0.5 -0.5] (g, h).

The root locus technique

The root locus technique can be used as well, especially for symmetric tem-
plates when the eigenvalues are real: The roots of the characteristic equations are
placed on the branches of the root locus in a window whose center is determined
by A0 and the width by the other template coefficients. The branches of the root
locus within a given “window” are not followed in one direction as it happens in
the classical cases when the amplification varies monotonically from zero to infin-
ity. Indeed, the portion of the root locus corresponding to the eigenvalues can be
followed in both directions according to the template. Using this tool combined
with the window method it is easy to make an image of the array dynamics in the
central linear part.



For asymmetric templates the shape of the root locus changes depending on the
asymmetry of the template. Several root loci are presented in Figs.4 and 5.

Y(s)=(s2+s+1)/(s+1),
A=[1 1 1]

Y(s)=(s2+s+1)/(s+1),
A=[1 1 1.1]

Fig.4 Root loci for a symmetric and an asymmetric template

Fig. 5. Root locus coresponding to the case of Fig. 3 a-b.

Concluding remarks

In this work, several analytical results concerning the dynamics of CNN and
pattern formation have been presented. They are based on the decoupling tech-
nique and represent a generalization of previously reported techniques used for
Turing pattern formation. The method has been combined with Nyquist and root
locus techniques and puts into evidence the dynamics of the CNN with respect to
the Fourier components of the input and initial conditions for ring boundary. Al-
though intrinsically linear, the approach gives significant insight for pattern
formation.
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