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Fig. 2. Error functions E for five teacher-signal-frequency points versus
iteration number of the learning process.
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Fig. 3. Real and imaginary parts of the output signals of the neural system
Re[l;(w)] and Im(I;(w)] versus input frequency shift Aw. Real and
imaginary parts of teacher signals are also indicated by ¢ and +, respectively.

Fig. 2 shows the learning curves for five teacher-signal-frequency
points. (They are dotted in Fig. 3 with ¢ and + for real and imaginary
parts, respectively.) The teacher signals are chosen to express various
sinusoidal profiles in the frequency domain depending on the output-
neuron index k. It is found in Fig. 2 that all the error functions reduce
immediately. Fig. 3 shows the real and imaginary parts of output
signals, Re[Ix(w)] and Im[Ix{w)], respectively, after the learning
is completed. Tt is found that the output curves trace the teacher-
signal points smoothly. The behavior of the neural network system
is successfully controlled by the input-frequency modulation.

IV. CONCLUSION
Coherent-type artificial neural networks whose behavior is con-
trolled by the carrier-frequency modulation have been proposed. The
network learns teacher signals associated with the information-carrier
frequency as a network parameter. The total network system forms a
self-homodyne circuit. The learning process is realized by adjusting
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delay time and conductance of complex-valued neural connections. A
simulation experiment has demonstrated that the network behavior is
controlled by the frequency modulation successfully. This result will
be applicable not only to signal processing but also to frequency-
multiplexed optical neural computing and quantum neural devices
such as carrier-energy-controlled neurons in the future.
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Analog Decoding Using a Gradient-Type Neural Network

Tulian B. Ciocoiu

Abstract—The problem of analog (soft) decision decoding of block codes
by means of neural networks is addressed. The proposed solution is based
on a recurrent high-order network implementing a special gradient-type
system. Simulation results for two different codes are reported, showing
improved performances over the classical hard decision decoder.

I. INTRODUCTION

Artificial neural networks have already been used with significant
success in data transmission applications. Examples include channel
equalization [1], code design [2], and decoding/error correction of
data [3].

The present contribution addresses the problem of analog (some-
times called soft) decision decoding of block codes. To generate such
a code the source encoder maps blocks of & binary information sym-
bols into output codewords of » bits (n > k). The mapping must be
carefully chosen to improve the reliability of transmission. There are
2k codewords to be selected from a set of 2" possible combinations
in a way that maximizes the Hamming distance between the chosen
words (the Hamming distance between two binary numbers equals
the number of positions they differ). If ¢ is the minimum Hamming
distance between any two codewords then it can be shown that up to
e errors can be corrected if d > 2e + 1 [4]. A block code is usually
denoted (n, k) and the ratio R = (k\n) is called the code rate.

Let us note that when the channel input and output alphabets are
identical the channel is called a hard decision channel and when
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the output alphabet is larger (possibly continuous) it is called a
soft decision channel. The decoding strategy in the case of hard
decision channels usually consists in thresholding the received mes-
sage, followed by an algebraic decoding/error correcting algorithm
(the threshold is set at half distance between the signalling levels
corresponding to the binary alphabet). Soft decision decoding acts
directly on the analog distorted noisy received message. Soft decision
decoding has much better performances over the hard decision one
in terms of post-decoding bit-error rate (BER), but soft decoding
algorithms for most block codes do not exist. The reason for using a
neural network to perform (soft decision) decoding will be explained
by means of a state-space approach. Analog recurrent neural networks
are, in fact, examples of multidimensional continuous nonlinear
dynamical systems. When certain conditions are met the dynamics
evolve from any initial state towards one particular stable equilibrium
point, and no other complex behavior can occur. Such systems are
called globally stable and are usually analyzed by means of the
second method of Lyapunov [5]. The idea is now straightforward:
the received distorted noisy analog codeword will act as an initial
condition for such a (neural) dynamical system which will eventually
settle down to one of the stable equilibrium points which should be
predefined to coincide with the correct versions of the codewords
used by the source, hopefully to the closest in terms of Hamming
distance.

II. THE PROPOSED ARCHITECTURE

There are some requirements the system should meet to reliably
perform the decoding and error correcting tasks [6]:

» each codeword should be stored as a point in a multidimensional
state-space where the Lyapunov function of the system has a
minimum;

* the shape of the basin of attraction around such a point should
be controllable;

* the number of spurious states (stable states which do not
correspond to desired stable equilibria) must vanish;

* the number of desired stable equilibrium points should be
arbitrarily large;

* the addition/elimination of a particular equilibrium should be
performed without redesigning the whole system.

The present approach makes use of a gradient type system [5],

specially designed to meet the conditions listed above
Cl$i:_3V(X),i:1._‘N (1)
dt dz;

where V(X)) is the so-called Lyapunov function (that is a positive

definite function having negative time derivative along a solution

trajectory in the state space) and N is the order of the system.

A well-known result states that all isolated minima of V(X) are

asymptotically stable states of system (1) [5].

Our intention is to have these minima placed in predefined posi-
tions, corresponding to the correct codewords of a specific block code.
To do so, we shall use an idea previously presented in 7] to solve
a pattern recognition problem, namely we construct our Lyapunov
function as a sum of individual functions exhibiting good space
localization properties, having deep minima at the desired locations
and been practically constant in rest

M
V(X) = g.(X) )

where M is the number of codewords to be stored and g,(X) are
functions satisfying the requirement above. The basic idea is to
choose the distance between the current position in the state space
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Fig. 1.

Example of the special Lyapunov function (M = 4 and N = 2).

and one of the desired equilibria as the argument of function g, so
we will be interested in finding appropriate G5 functions with sharp
minima at the origin

M
V(X) =Y Guldp(X, X*)) 3)

s=1
where dp, p € N is the distance induced by the L, measure defined
on the multidimensional vector space to which the codewords belong
and X* is a codeword to be stored. There are many ways to adopt
the functions G'; and the distance d,. The choice should take into
consideration the specific communication environment (that is the
modulation scheme, the characteristics of the transmission channel,
the nature of the noise) and should offer implementation advantages.
We decided to use a Gaussian type function and two different
distance measures, the Euclidean (p = 2) and Manhattan (p = 1)

distance
dg(x, X%)

Gs(X)=1—¢ 2% | 4)

Besides its remarkable space selectivity this choice for function G is
strongly motivated by the implementation advantages it offers (related
to the fact that it is factorizable) [8].

Remark: It is worth noting that (3) using a Gaussian-type function
can be regarded as a special radial basis functions (RBF’s) expansion
of the Lyapunov function V(X) [9].

To offer an intuitive idea of the proposed approach we present
in Fig. 1 an example of a Lyapunov function synthesized by using
relation (3) for a system of order N = 2 with M = 4 stable
equilibrium points, namely: (—1, —1); (=1, 1); (1, —=1); (1, 1).
Function G, from (4) was employed, with os = 0.5.

In Table I we present the equations describing the dynamical
systems for the two types of distances where, for simplicity, all o are
considered equal. Special care must be taken in the case of Manhattan
(p = 1) distance, since this function is not differentiable. A proper
approximation for the modulus function has been used

flx) = iln (cosh (ax)); f'(z) = tanh (ax) (5)

where parameter « controls the slope of the derivative around origin
(in Table I the | - | symbol for the argument of the exponential was
maintained for the ease of notation).

The relation between the minima of the Lyapunov function in (3)
and those corresponding to individual functions G, is analyzed by
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TABLE I
EQUATIONS DESCRIBING THE GRADIENT-TYPE SYSTEMS FOR EUCLIDEAN (p = 2) AND MANHATTAN (p = 1) DISTANCE MEASURES
Distance: Dynamic system equations:
N
o "JZ; “j‘{,”)ﬁ
dx. Pk
&V iz(l—e 2y
& |
N
X5y
1 M _.L’__B_.__
= -y e
0% s=1
¥ X
N u ‘;1 a5y " 'g &7
= V) x, L e
dXX%) = ¥ (x-x) LY PG L R
i1 = o5
N s
3 bl
= - s =1 J
d(X.X%) z;lxi x,-| dx, 3V 3 i(l erzqz )
i= = = - - -
dt ax; ils=1
N
» Pl
1 - W@
- 5o ebetn)le
s=1

means of a simple example similar to that presented in [7]. Let
us consider the equation corresponding to the Euclidean distance
measure (p = 2) from Table 1. The equilibrium points (both stable and
unstable) are obtained by imposing dz;/dt = 0, forall ¢ = 1--- .\,
Let X° be the individual minimum introduced by function G5 and let
restrict our analysis to a small neighborhood around it. If we denote
by drmin the minimum distance between the codewords to be stored,
we may write ||X — X*|| > dumin, for every X' # X°. For the two
block codes which were used in the simulations, we have dmin = 3
and M = 2¢ (since we have k = 4 information bits in both cases).
Choosing dmin/o > 6 we get

diEi s
7t =0 (z; —x;)e 207
- t _ZN:1(E-7"1§)2
+ Z(Jﬁz — z;)e 202
t=1

t#s
N
— e i)’

=0 (zi—ai)e 227 +107%2 =0

which shows that the minima of the Lyapunov function practically
coincide with those of the individual functions G; when imposing
restrictions on the values of the ¢ parameter. Moreover, it is easy
to see that the number of desired minima can be arbitraxily large if

o is sufficiently small. In Table II we give the actual minima of the

function V(X)) corresponding to several codewords selected from the
(7,4) Hamming code, for different values of o.

The problem of the extension of the basin of attraction around such
a stable equilibrium point is a more subtle one. We only cite here an
efficient constructive method for estimating it proposed in [10]. To
use it is somehow simpler in the case of gradient-type systems, since
the method requires as a starting point the availability of a Lyapunov
function.

In Fig. 2 the block diagram of the system for the Euclidean distance
is presented. The code dependent linear combiner outputs factors of
the form

N 832
1 M 42‘7:1(1] °;)

s .
— E zie 207
o2

s=1

(©)

which represent the sums of its (Gaussian) inputs corresponding to
nonzero ¢ elements. There are N such outputs. The output denoted
by “0,” which is common to all IV cells, implements a special sum of
the above type, namely the one for all =] equal to one. The issue of
distance computing cell has been addressed in [8]. The presence of
multipliers is still an important problem, which can be alleviated by
using the following approximation for the derivative of the Gaussian
function:

4
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TABLE 1T
RELATION BETWEEN SEVERAL CODEWORDS FROM THE (7,4) HAMMING CODE AND THE ACTUAL MINIMA OF THE LYAPUNOV FUNCTION IN (3) (EUCLIDEAN DISTANCE)
Codewords: 0000000 1101000 1111111
ci= 05 05,05,..05 0.5,05,..05 05,05, .05
ol = 0.33 | 0.057, 0.057, ... 0.057 0.92, 0.92, 0.07, 092, 0.07, 0.07, 0.07 092,092, .. 092
o? = 0.25 |0.009, 0.009, ... 0.009 0.99, 0.99, 0.009, 0.99, 0.009, 0.009, 0.009 0.99, 099, ... 0.99

JﬁLjCQJJﬁ

1 2uun

Fig. 2. Block diagram of the network (Euclidean distance measure).

The multipliers can be eliminated by slightly complicating the argu-
ment of the exponential.

III. COMPUTER SIMULATIONS

To test the efficiency of the proposed approach intensive computer
simulations have been performed using two different block codes,
namely (7,4) Hamming code and (7,4) cyclic redundancy code. They
both are one error correcting codes. The decoding performances are
usually analyzed in terms of the post-decoding BER versus the signal-
to-noise ratio per information bit Ey/Ng. The last term strongly
depends on the modulation scheme and the type of channel which is
used. For additive white Gaussian noise (AWGN channel), baseband
unipolar transmission and for optimal demodulator (matched filter
followed by a sampler) the ratio E3/No can be expressed as a
function of the signal amplitude A and the noise variance o2 as [4]

Eb _n A(j 8

Mo = k8ol ®
The factor n/k indicates that Es is the energy per information bit
and not per channel symbol.

Many simulations have been performed by selecting one of the
codewords and adding Gaussian noise with zero mean and o2
variance to each bit then delivering this analog vector to the neural
network, as an initial condition. The network will converge towards
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Fig. 3. (a) Simulation results for the (7,4) Hamming code (¢ = 0.5): z —d3

network; o — dy network (o = 50); solid line—using the hard-decision
decoder. (b) Simulation results for the (7,4) cyclic redundancy code (o = 0.5):
x—dg network; 0—d; network (o = 50); solid line—using the hard-decision
decoder.

one of the predefined equilibrium points (which practically coincide
with the correct codewords), ideally to the closest in terms of
Hamming distance.

The results are presented in Fig. 3(a) for the (7,4) Hamming code
and in Fig. 3(b) for the (7,4) cyclic redundancy code. For comparison,
the results obtained by using a standard hard decision decoder are
also presented. It is obvious that the soft decision neural decoders
perform better than the hard one, which illustrates in fact a well-
known principle. The post-decoding bit error rate is one order of
magnitude smaller for the neural decoder using the Euclidean distance
at 7 dB signal-to-noise ratio for the (7,4) Hamming code and slightly
better for the cyclic code. In all simulations we have considered
As = 1.

In Fig. 4 typical dynamic trajectories are shown. In Fig. 4(a) only
one component of the initial state vector exceeds the threshold set at
0.5 (half distance between the two signaling levels) and the final state
of the system is the correct (0- - -0) vector. The same result would
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Fig. 4. Typical dynamic trajectories for dp network (X (t) = {z;(?)}, i =

1---7): (a) one component of the initial state vector exceeds the threshold
value; (b) two components of the initial state vector exceed the threshold
value; (c) three components of the initial state vector exceed the threshold
value; (d) convergence towards a wrong stable state.

had been obtained if a hard-decision decoder have been used since
after thresholding the Hamming distance between the resulting word
and the correct one would have been one (and the (7,4) Hamming
code is able to correct up to one error). Anyway, for the trajectories
presented in Fig. 4(a) and (c) the resulting Hamming distance after
thresholding would be two, respectively, three, and the hard decoder
would not be able to reconstruct the correct codeword. In Fig. 4(d)
convergence to a wrong codeword is shown. These graphics indicate
that the basin of attraction of a specific codeword may include states
that, after thresholding, give binary words whose Hamming distances
from it exceed one (which is the limit for the hard-decision decoder
to operate well).

IV. CONCLUSIONS

This paper presents a novel solution for the implementation of
soft decision decoders by using a special gradient type neural
network. The synthesis of the network relies on the construction
of a particular Lyapunov function. The proposed approach has the
following advantages:

» the system needs no learning phase, since it is a hardwired one;

« the key elements of the architecture have already been imple-
mented in VLSI (very large scale integration) structures. IBM
has recently produced a neural chip including Gaussian-type
functions and distance computing blocks [11];

» the system can be used with minor modifications for decoding
me-ary codes (where m is the number of signaling levels, m >
2).

Using the distance between X and X° as the argument for the
space selective function G, is only sufficient, not necessary. In
fact, the argument has to be positive and vanishes only when the
current state of the network equals one of the stored codewords.
For binary codewords other solutions could prove more useful for
implementation, for example
N
S lwa(l = 28) 4 23 (1 - )] ©

i=1

P(X, X*) =
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which does not represent a properly defined distance in R™ (since
P(X, X*) is zero for X = X° only when X and X® are both
binary, in which case it gives the Hamming distance between the
two vectors). This choice could be related to a paper by Saha et al.
where oriented nonradial-basis functions (ONRBF’s) are introduced
[12].

It is worth noting that the presence of any nonlinearities other
than Gs should be avoided, since they could introduce supplementary
stable states which would degrade the performance of the proposed
solution. If operational amplifiers are used to implement the integra-
tors and the adders they should operate in the linear region.

There are some problems to be further investigated, for example
making the system a learning one by setting the ¢ parameters in an
adaptive manner. This feature would allow the system to cope with
the (possibly nonstationary) communication environment and, more
generally, to work properly when the equilibrium points are clustered.

The reported results obtained through simulation are believed to
be even better for more complicated block codes. To acquire the full
benefit of the proposed solution, it should be hardware implemented.
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