
Neurocomputing 48 (2002) 609–622
www.elsevier.com/locate/neucom

RBF networks training using a dual extended Kalman $lter

Iulian B. Ciocoiu∗

Faculty of Electronics and Telecommunications, Technical University of Ias�i, P.O. Box 877,
Ias�i, 6600, Romania

Received 11 July 1999; accepted 13 June 2001

Abstract

A new supervised learning procedure for training RBF networks is proposed. It uses
a pair of parallel running Kalman $lters to sequentially update both the output weights
and the centres of the network. The method o2ers advantages over the joint parameters
vector approach in terms of memory requirements and training time. Simulation results for
chaotic time series prediction and the 2-spirals classi$cation problem are reported, and the
e2ect of using two di2erent pruning techniques for improving the generalization capacity
is addressed. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: RBF networks; Supervised training; Kalman $lter; Pruning

1. Introduction

Radial basis function (RBF) networks have been traditionally used as a mul-
tidimensional interpolation technique of general mappings f :RN → R according
to [1]

f(X)=w0 +
M∑
i=1

wi�(‖X −C i‖); (1)

where � is a nonlinear function selected from a set of typical ones, ‖ · ‖ denotes
the Euclidean norm, wi are the tap weights and Ci ∈RN are called RBF centres.
It is easy to see that the formula above is equivalent to a special form of a
two-layer perceptron, which is linear in the parameters by $xing all the centres
and nonlinearities in the hidden layer. The output layer simply performs a linear

∗ Tel.=fax: +40-32-213-737.
E-mail address: iciocoiu@etc.tuiasi.ro (I.B. Ciocoiu).

0925-2312/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0925-2312(01)00631-2

610 I.B. Ciocoiu /Neurocomputing 48 (2002) 609–622

combination of the (nonlinearly) transformed inputs and thus the tap weights wi

can be obtained by using the standard LMS algorithm or its momentum version.
This leads to a dramatic reduction of the computing time with the supplementary
bene$t of avoiding the problem of local minima, usually encountered when sim-
ulating standard multilayer perceptrons. Anyway, in many applications the LMS
algorithm could still be too slow, especially when the input correlation matrix is
ill-conditioned [2]. Superior alternatives have been proposed, for example those
relying on orthogonalization procedures [3,4].
The approximation capabilities of RBF networks critically depend on the choice

of the centres. Most existing approaches use a hybrid training strategy, using an
unsupervised algorithm (e.g., k-means clustering or Kohonen’s self-organizing maps
[2]) to pick the centres, followed by a supervised one to obtain the output weights.
Theoretical justi$cation of the suitability of such a strategy is presented in [5].
Anyway, in order to acquire optimal performance, the centres training procedure
should also include the target data [6], leading to a form of supervised learning
which proved superior in several applications [7].
In this paper, we propose the use of Kalman $lter as a framework for the

supervised training of both weights and centres of the network, following the line
of previous work related to considering the training procedure of a neural network
as an estimation problem [8,9]. More speci$cally, due to the intrinsic nonlinearity
of the models, on-line linearization around the current state vector is required,
leading to the extended Kalman $lter (EKF) algorithm [2]. In the context of RBF
networks, the Kalman $lter was used for output weights estimation only [10], and
combined weights and centres estimation, by concatenating them into a joint state
vector (this approach will be subsequently called Global EKF (GEKF)) [11]. We
propose a novel solution, based on using a pair of parallel running Kalman $lters
to sequentially update both the weights and the centres of the network. We call it
a Dual EKF (DEKF 1) algorithm, by analogy with a similar concept introduced in
[12], where a pair of Kalman $lters was used for combined estimation of the states
and the weights of a standard multilayer perceptron performing time series analysis.
The proposed approach has the following advantages, to be further explicited in
the next paragraph:

— much similar to GEKF, centres positions need not be computed before the esti-
mation of the output weights and, more important, on-line training is possible.
Anyway, the memory requirements and computational complexity are much
smaller than in the joint parameters vector case,

— in the case of output weights estimation only, the required linearization of the
state equations introduces no errors, since the model is linear in those param-
eters. This advantage would be lost if we used a joint (centres and weights)
parameters vector, since the state-equations would still be nonlinear. Moreover,

1 The DEKF notation should not be confused with the one in [9], which stands for decoupled
extended Kalman $lter.

I.B. Ciocoiu /Neurocomputing 48 (2002) 609–622 611

when compared to the classical gradient-descent procedure this solution o2ers
improved performance, since it is a second-order parameter estimation method,

— the results provided by the Kalman $lter training procedure for estimating the
centres values may be directly used to obtain a measure of their relative im-
portance for solving a given approximation task. This saliency information rep-
resents the basis for a pruning strategy aiming at improving the generalization
capability of the network by eliminating the unimportant centres and associated
output weights.

2. Algorithm description

The Kalman $lter is a well-known estimation procedure of a vector of parameters
from available measured data. It is based on the formulation of the application
within a state-space framework and was originally introduced for linear models,
but linearization can be used to extend the method for the nonlinear case too.
Given a controllable and observable system, we may write [13]

X [k + 1]=�[k + 1; k]X [k] + v[k];

y[k]=C [k]X [k] + q[k]; (2)

where �[k + 1; k] is the state transition matrix (supposed to be known), v[k] is
the input driving noise, and q[k] is the measurement noise, which are speci$ed by
the following correlation matrices (�kn denotes the Kronecker delta function):

E{v[k]vT[n]}= �knQ[n];

E{q[k]qT[n]}= �kn�2
q[n]= �knR[n];

E{v[k]qT[n]}= 0: (3)

Let us de$ne by X̂
−
[k] the predicted value of the state vector at time k based

on all information available before time instant k, and by P−[k] its associated
covariance error matrix. We may update this value using the currently measured
data y[k] using a linear combination of the old value and the prediction error at
time k according to

X̂ [k]= X̂
−
[k] +G [k](y[k]−C [k]X̂

−
[k]); (4)

where G[k] represents the current value of the Kalman gain, whose value is ob-
tained by

G [k]=P[k]−C [k]T(C [k]P[k]−C [k]T + R[k])−1: (5)

The predicted error covariance matrix P−[k] is recursively obtained via a Ricatti-
type equation of the form

P−[k + 1]=�[k + 1; k]P[k]�T[k + 1; k] +Q[k]; (6)

612 I.B. Ciocoiu /Neurocomputing 48 (2002) 609–622

where the current matrix P[k] is given by

P[k]=P−[k]−G [k]C [k]P−[k]: (7)

When nonlinear models are used the linearization of the equations around the
current operating point is needed, thus approximating a nonlinear system by a
time-varying linear one. The matrices �[k+1; k] and C [k] must be replaced accord-
ingly with the Jacobian of the (nonlinear) function appearing in the state transition
equation, and the measurement equation, respectively, leading to the formulation
of the so-called Extended Kalman $lter algorithm [13].
A short discussion about the memory requirements for storing the (symmetric)

error covariance matrix P and the computational complexity of the algorithm is
now in place. Consider an RBF network with a single output neuron using a
Gaussian-type activation function for the neurons in the hidden layer

�(X)= e−X2=2�2
: (8)

Suppose there are M centres of dimensionality N , and associated (M + 1) output
weights, along with a common � value. When concatenating all those parameters
into a single state vector, this amounts to a total length of T =[M ∗N + M + 2]
components. The covariance matrix P has T 2 elements, which is prohibitively large
for most practical applications. Moreover, the computational requirements are also
of the order O(T 2) [14]. Several methods have been proposed in order to reduce
these requirements, among which we may cite:

— partition of the global estimation problem into a set of separate, local subprob-
lems, whose degree of granularity vary from the layer level towards a single
neuron level (MEKA) [15];

— split the global state vector into groups of components that are considered
independent (DEKF) [16]. As a consequence, the original error covariance
matrix may be block-diagonalized by ignoring the o2-diagonal terms.

The proposed approach is related to the second choice. We use a pair of distinct
Kalman $lters for estimating the optimum values of the centres, and the output
weights of an RBF network, respectively. The state vector of the $rst $lter has
TC = (M ∗N) components, while the second one has TW =(M+1) components. The
error covariance matrices will have a total number of (T 2

C + T 2
W) elements, which

is much less than that for the global case when the number of centres is large.
Standard use of the Kalman $ltering framework for designing feedforward neural

networks is based on the formulation of the state transition equation simply as
[14,15]

X [k + 1]=X [k]; (9)

where the state vector X includes all parameters of the network. Comparing the
relation above with Eq. (2), it is important to note that the absence of a process
noise term may yield computational diMculties in estimating the error covariance
matrix P (it may become singular or lose the property of nonnegative de$niteness).

I.B. Ciocoiu /Neurocomputing 48 (2002) 609–622 613

In order to avoid this we may add arti3cial process noise, which has additionally
proven to increase the rate of convergence and the quality of solutions in a number
of applications [14]. As will be pointed out in the next paragraph, this idea is also
useful for assessing the relative importance (saliency) of the network parameters,
which may be pruned accordingly [17].
In the following, we present the actual equations used for estimating the values

of the centres and the output weights of the RBF network.

2.1. Estimation of the output weights

The learning task is formulated as follows:

W [k]=W [k − 1];

y[k]=�(C[k − 1])W [k] + q[k]; (10)

where

W [k] = [w0; w1; : : : ; wM]
T;

�(k) = [1�(‖X [k]−C 1‖)�(‖X [k]−C 2‖) : : : �(‖X [k]−CM‖)]
and q[k] is the measurement noise, assumed white with variance �2

q. It is impor-
tant to observe that in the case of RBF networks with 3xed centres the estimation
(learning) problem is a linear one, as opposed to the case of standard MLP net-
works. According to Eqs. (4)–(7), the (least square) estimate of the output weights
vector Ŵ [k] and its prediction Ŵ

−
[k + 1], along with their respective error co-

variance matrices PW [k], and P−
W [k + 1] become

GW [k]=PW
−[k]�T[k]∗{�[k]PW−[k]�T[k] + �2

q}−1; (11)

Ŵ [k]= Ŵ
−
[k] +GW [k]{y[k]−�[k]Ŵ

−
[k]}; (12)

PW [k]=PW
−[k]−GW [k]�[k]PW

−[k]; (13)

Ŵ
−
[k + 1]= Ŵ [k]; (14)

PW
−[k + 1]=PW [k]; (15)

where GW [k] designates the current value of the Kalman gain.

2.2. Estimation of the centres

A second Kalman $lter is used to estimate the centres, which are described by
the state equations

C [k]=C [k − 1];

y[k]=f{X [k]; �(C [k]);W [k − 1]}+ q[k]; (16)

614 I.B. Ciocoiu /Neurocomputing 48 (2002) 609–622

where f(·) is given in Eq. (1). The adaptation algorithm requires the linearization
of the relation above and is formulated as [13]

GC[k]=PC
−[k]J T[k]{J [k]P−

C [k]J
T[k] + �2

q}−1; (17)

Ĉ [k]= Ĉ
−
[k] +GC[k]{y[k]−�(Ĉ

−
[k])Ŵ

−
[k]}; (18)

PC [k]=PC
−[k]−GC[k]J [k]PC

−[k]; (19)

J [k]=
@f[Ĉ [k]; Ŵ]

@Ĉ [k]
; (20)

Ĉ
−
[k + 1]= Ĉ [k]; (21)

PC
−[k + 1]=PC [k]; (22)

where the elements of the Jacobian are

Jij[k]= {y[k]− d[k]}wkje−‖X [k]−Cj‖2=2�2
j
Xi[k]−C j

i

�2
j

; (23)

Cj
i denotes component i of centre vector Cj; d[k] is the current desired output,

and y[k] is the output of the RBF network.
The learning algorithm works on a pattern-by-pattern basis: the adaptation proce-

dure consists of consecutively performing the modi$cation of the centres (Eqs. (17)
–(22)) and the weights (Eqs. (11)–(15)) on the arrival of each training input–
output pair. Typically, the initial values of the centres should be obtained after
an unsupervised training phase, while the weights are initialized to small random
values. The initial values of the symmetric error covariance matrices reNect the
uncertainty in locating the weights and the centres, and are typically chosen pro-
portional to an identity matrix of proper order [13]. As pointed out in [14], those
matrices and the noise covariance matrices Q and R represent the only parameters
one has for tuning the Kalman $lter, so their proper setting is critical in obtaining
accurate results, especially for nonlinear models. Making noise covariances larger
decreases the Kalman gain, much similar as decreasing the value of the learning
rate in standard gradient descent. A method for estimating noise covariance values
from measured data is given in [18] based on a general recursive procedure pre-
sented in [19]. Speci$cally, matrix R is assumed to be diagonal R= �I, where the
parameter � is estimated recursively by

�̂[k]= �̂[k − 1] + �[k]{(d[k]− y[k])2 − �̂[k − 1]}; (24)

where �[k]= 1=k. A speci$c approach related to speech processing applications is
reported in [12], considering periodic re-estimation based on a linear autoregressive
(AR) model describing the measured data.

I.B. Ciocoiu /Neurocomputing 48 (2002) 609–622 615

3. Simulation results

We have tested the eMciency of our algorithm on two di2erent applications,
namely one-step ahead prediction of the chaotic time series generated by the
quadratic map, and the celebrated 2-spirals classi$cation problem.

3.1. Chaotic time series prediction

The database was formed of 500 points generated by the quadratic map: y[k]=
ax[k](1−x[k]), which is known to exhibit chaotic behaviour for a=4. We retained
a separate test set of 100 points to assess the quality of the solution. The measure-
ment noise was considered as Gaussian zero mean with �2

q =10−6. Initial values
for the weights were selected random. Gaussian activation functions were used,
and the centres were initially chosen using the k-means clustering algorithm. The
variances �2

j were set by the k-nearest-neighbour algorithm. Computer simulations
were performed using di2erent number of centres and the following algorithms:
(a) global EKF (GEKF) as proposed in [11]; (b) dual EKF (DEKF) based on a
pair of Kalman $lters as described above; (c) Kalman $lter training of the output
weights only (KF weights); (d) standard LMS for training all parameters of the
RBF network.
In Fig. 1 the phase plots of the true and predicted series on the test set are shown

in the case of DEKF algorithm using $ve centres. Typical learning trajectories are
given in Fig. 2, showing comparable convergence speed for the DEKF and GEKF
algorithms, while all Kalman-based approaches outperformed the standard LMS
algorithm (typically less than 20 training epochs compared to several hundreds of
epochs for the LMS case). It is clear from these $gures that the proposed solution

Fig. 1. Quadratic map chaotic time series prediction using DEKF algorithm (5 centres): phase plot
for the test set.

616 I.B. Ciocoiu /Neurocomputing 48 (2002) 609–622

Fig. 2. Typical evolution of NMSE error on the training set for the prediction application: (a) DEKF
algorithm (circles—5 centres, dotted line—7 centres, solid line—10 centres); (b) 5 centres: GEKF
(solid line), DEKF (dotted line), KF weights (circles).

yields high performance for this particular application even for a small number
of centres, which is further proven by the values of the normalized mean-square
error (NMSE) and cross-correlation coeMcient R given in Table 1 (averages for
10 separate runs). R is calculated according to

R=

√
1−

∑
i {y[i]− yp[i]}2∑

i {y[i]− Py}2 : (25)

I.B. Ciocoiu /Neurocomputing 48 (2002) 609–622 617

Table 1
Simulation results for chaotic time series prediction

Training set

No. centres DEKF GEKF KF weights LMS

NMSE R NMSE R NMSE R NMSE R
(×10−3) (×10−3) (×10−3) (×10−3)

5 0.12 0.995 0.13 0.99 0.14 0.99 2.9 0.98
7 0.1 0.995 0.5 0.99 0.1 0.99 2 0.98
10 0.04 0.995 0.05 0.99 0.07 0.99 0.4 0.98

Test set

No. centres DEKF GEKF KF weights LMS

NMSE R NMSE R NMSE R NMSE R
(×10−3) (×10−3) (×10−3) (×10−3)

5 0.14 0.994 0.15 0.98 0.16 0.98 3.1 0.97
7 0.12 0.994 0.6 0.98 0.11 0.984 2.5 0.983
10 0.06 0.994 0.07 0.98 0.08 0.986 0.8 0.98

Table 2
Simulation results for the 2-spirals classi$cation problem

DEKF GEKF KF weights LMS

NMSE train (×10−3) 0.41 1.28 3.59 8.05
No. of training epochs ¡ 100 ¡ 100 ¡ 100 ¿ 5000
CPU time (s=training epoch) 70 200 6 —
Classi$cation accuracy

Train set 97% 98% 95% 98%
Test set 97% 98% 96% 98%

3.2. Two-spirals classi3cation problem

The task is to correctly classify two sets of 194 training points which lie on two
distinct spirals in the x–y plane. The spirals twist three times around the origin
and around each other. This is a benchmark problem considered to be extremely
diMcult for standard multilayer networks trained with classical back-propagation
class algorithms, although successful results were reported using other architectures
or learning strategies [20,21].
We performed intensive computer simulations using Gaussian activation func-

tions, variable number of centres and initialization procedures. We tested the same
algorithms indicated in the previous section, namely GEKF, DEKF, KF weights,
and the gradient-descent procedure described in [6]. Simulation results in terms
of NMSE values and classi$cation accuracy are indicated in Table 2. They show
much similar performances of DEKF and GEKF while the former needs signif-
icantly less computation time (tests were performed with MATLAB 5.3 running

618 I.B. Ciocoiu /Neurocomputing 48 (2002) 609–622

Fig. 3. Simulation results for the 2-spirals classi$cation problem (96 centres): (a) training data; (b)
DEKF algorithm; (c) GEKF algorithm; (d) gradient descent.

on a Pentium II=400 MHz processor). The classi$cation performance was tested
as follows: (a) on a separate set of 41 × 41 points, uniformly distributed on the
surface covered by the training data. In Fig. 3 we present the results for M =96
centres, evenly selected initially from the training database; (b) on a set of 194
points placed in between the training data (not shown in the $gures). The results
are given in Table 2.
Convergence was typically reached in about 150 training epochs with DEKF,

while the gradient-descent required several thousands of epochs and a careful tun-
ing of the learning parameters. Rigorously speaking, the �j parameters of the Gaus-
sian functions should also be estimated during the training phase, but considering

I.B. Ciocoiu /Neurocomputing 48 (2002) 609–622 619

an extra Kalman $lter could render the computational cost excessive. Since the
approximation capabilities of RBF networks are still preserved using a common
value for those parameters [22], they were all taken equal to 0.3. We have also
tested the possibility of heuristically adapting their values according to the distance
between the centres, but no improvement was obtained.
In order to improve the generalization performances of neural networks, we could

typically choose between two alternatives [2]: (a) including regularization terms
in the de$nition of the error function; (b) constructive methodologies leading to
proper architecture synthesis. The approaches belonging to the latter case fall into
two categories, namely “learn-and-grow” techniques, starting from small nets and
successively introducing neurons and weights, respectively pruning methods, start-
ing with large networks and progressively eliminating insigni$cant weights=neurons.
In the context of RBF networks both approaches have been tested, e.g. Platt’s re-
source allocating network [23], and I-Projection principle [10]. We have compared
the performances of two distinct pruning strategies, which are described next:

(a) Principal components pruning (PCP) [24] is ideally suited for linear networks
(such as RBF networks with $xed centres). Basically, the idea relies on pro-
jecting the (successive layers of) weights of a trained network on the subspace
spanned by the signi$cant eigenvectors of the corresponding input correlation
matrix. It is easy to apply even for large networks and it needs no retraining
after pruning is performed. The relation between PCP and other pruning tech-
niques as optimal brain damage (OBD) and optimal brain surgeon (OBS) is
presented in [25]. Eliminating eigennodes should improve generalization per-
formances by reducing the number of e6ective number of parameters of the
network [25].

(b) Recently, a number of papers have addressed pruning within a Kalman $ltering
framework [17,26]. The relative importance (saliency) of the parameters of a
feedforward neural network is assessed using speci$c information available
after the training period, namely the $nal values of the error covariance matrix
P from Eq. (7). Denoting P∞= limk→∞ P[k] and the covariance matrix of the
process noise Q= qI; the incremental change of the approximation error due
to removing the kth element of the (parameters) state-vector W is given by
[17]

VEk = q(P−2
∞)kkW2

k : (26)

Remark: In order to assess the importance of the centres we used the PC matrix
from Eq. (19). The formula above is valid under the assumption that the eigenval-
ues of P∞ are much larger than q (which was true in our experiments). Moreover,
while the standard approach when using the Kalman $lter in neural network train-
ing assumes no process noise to be present, experimental results show that its
inclusion has bene$ts in terms of numerical stability and optimality of the $nal
solution [14].
We applied both techniques for the 2-spirals classi$cation problem on a net-

work previously trained with the DEKF algorithm, and the results are presented in

620 I.B. Ciocoiu /Neurocomputing 48 (2002) 609–622

Fig. 4. Simulation results for pruned networks (75 centres, DEKF) on the test set: (a) PCP; (b)
Kalman-based pruning.

Fig. 5. Performance evolution on the training set during the pruning process (solid line—Kalman-based
pruning; dotted line—PCP): (a) NMSE; (b) classi$cation accuracy.

Fig. 4. It is obvious that only 75 centres out of 96 could be used without signif-
icantly degrading the classi$cation performances. In Fig. 5 we present the modi-
$cation of the NMSE values and classi$cation accuracy on the training set as a
function of remaining centres, showing smoother degradation for the Kalman-based
pruning strategy.

I.B. Ciocoiu /Neurocomputing 48 (2002) 609–622 621

4. Conclusions

We analyzed the eMciency of a new fully supervised training algorithm for RBF
networks relying on a pair of parallel running Kalman $lters. It o2ers advantages
when compared to the global approach in terms of memory requirements and com-
putational cost, whereas the approximation capability is comparable. Decoupling the
training procedure of the weights and the centres of the RBF network could some-
times result in convergence problems, although in the simulations reported herein
this phenomenon was not observed. In the case of large networks, the memory
requirements for storing the (symmetric) error covariance matrices could still be-
come prohibitive, and pruning techniques need to be used. A recently introduced
Kalman-based pruning strategy was proven eMcient for a diMcult classi$cation
problem.

References

[1] D.S. Broomhead, D. Lowe, Multivariable functional interpolation and adaptive networks, Complex
Systems 2 (1988) 321–355.

[2] S. Haykin, Neural Networks—A Comprehensive Foundation, IEEE Press, New York, 1994.
[3] S. Chen, C.F.N. Cowan, P.M. Grant, Orthogonal least squares learning algorithm for radial basis

function networks, IEEE Trans. Neural Networks 2 (2) (1991) 302–309.
[4] W. Kaminski, P. Strumillo, Kernel orthonormalization in radial basis function neural networks,

IEEE Trans. Neural Networks 8 (5) (1997) 1177–1183.
[5] T. Chen, R. Chen, Approximation capability to functions of several variables, nonlinear functionals

and operators by radial basis function neural networks, IEEE Trans. Neural Networks 6 (1995)
904–910.

[6] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, New York,
1995.

[7] D. Wettschereck, T. Dietterich, Improving the performance of radial basis function networks
by learning centre locations, in: J.E. Moody, S.J. Hanson, R.P. Lippmann (Eds.), Advances
in Neural Information Processing Systems, Vol. 4, Morgan Kaufmann, San Mateo, CA, 1992,
pp. 1133–1140.

[8] J. Connor, R. Martin, L. Atlas, Recurrent neural networks and robust time series prediction, IEEE
Trans. Neural Networks 5 (2) (1994) 240–254.

[9] G. Puskorious, L. Feldkamp, Neural control of nonlinear dynamic systems with Kalman $lter
trained recurrent networks, IEEE Trans. Neural Networks 5 (2) (1994) 279–297.

[10] V. Kadirkamanathan, M. Niranjan, F. Fallside, Models of dynamic complexity for time-series
prediction, ICASSP, 1992, pp. 1–4.

[11] I.T. Nabney, Practical methods of tracking of non-stationary time series applied to real world
problems, in: S.K. Rogers, D.W. Ruck (Eds.), AeroSense ’96: Applications and Science of
Arti$cial Neural Networks II, SPIE Proc. No. 2760, 1996, pp. 152–163.

[12] A.T. Nelson, E.A. Wan, Neural speech enhancement using dual extended Kalman $ltering, ICNN,
1997, pp. 2171–2175.

[13] R.G. Brown, Random Signal Analysis and Kalman Filtering, Wiley, New York, 1983.
[14] R.J. Williams, Some observations on the use of the extended Kalman $lter as a Recurrent Network

Learning Algorithm, NU-CCS-92-1, Northeastern University, 1992.
[15] S. Shah, F. Palmieri, M. Datum, Optimal $ltering algorithms for fast learning in feedforward

neural networks, Neural Networks 5 (1992) 779–787.
[16] G.V. Puskorious, L.A. Feldkamp, Decoupled extended Kalman $lter training of feedforward

layered networks, IJCNN, 1991, pp. 771–777.

622 I.B. Ciocoiu /Neurocomputing 48 (2002) 609–622

[17] J. Sum et al., On the Kalman $ltering method in neural-network training and pruning, IEEE
Trans. Neural Networks 10 (1999) 161–166.

[18] Y. Iiguni et al., A real-time learning algorithm for a multilayered neural network based on the
extended Kalman $lter, IEEE Trans. Neural Networks 40 (1992) 959–966.

[19] L. Ljung, T. Soderstrom, Theory and Practice of Recursive Identi$cation, MIT, Cambridge, 1983.
[20] S.E. Fahlman, C. Lebiere, The Cascade-Correlation Learning Architecture, NIPS2, Morgan

Kaufmann, San Mateo, CA, 1990, pp. 524–532.
[21] R. Lengelle, T. DeXnux, Training MLPs layer by layer using an objective function for internal

representations, Neural Networks 9 (1996) 83–97.
[22] J. Park, I.W. Sandberg, Approximation and radial basis function networks, Neural Comput. 5

(1993) 305–316.
[23] J. Platt, A resource allocating network for function interpolation, Neural Comput. 3 (1991) 213–

225.
[24] A.U. Levin, T.K. Leen, J.E. Moody, Fast pruning using principal components, in: J. Cowan,

G. Tesauro, J. Alspector (Eds.), Advances in Neural Information Processing Systems, Vol. 6,
Morgan Kaufmann, San Mateo, CA, 1994, pp. 35–42.

[25] J. Moody, The e2ective number of parameters: an analysis of generalisation and regularisation
in nonlinear learning systems, in: J.E. Moody, S.J. Hanson, R.P. Lippmann (Eds.), Advances
in Neural Information Processing Systems, Vol. 4, Morgan Kaufmann, San Mateo, CA, 1992,
pp. 847–854.

[26] J. Sum et al., Extended Kalman $lter-based pruning method for recurrent neural networks, Neural
Comput. 10 (1998) 1481–1505.

Iulian B. Ciocoiu received a BS degree in Electronics in 1988 and a Ph.D.
in Electrical Engineering in 1996, both from the Technical University of Iasi,
Romania. He is lecturer at the Faculty of Electronics and Telecommunications
of the Technical University of Iasi, the Signals, Circuits, and Systems De-
partment. His research interests include neural networks learning algorithms,
complex dynamics in electronic systems, and time series prediction.

