Overview of Effects of Finite Register Length in DSP
1) Quantizatiﬂn in A/D
2) Coefficient inaccuracy
3) Arithmetic “roundoff”
a) “Roundoff noise”
b) Adder overflow

c) Zero-input limit cycles

1) Quantization in A/D

The A/D employs a quantizer to round off the value of x,, to fit into the available register
length. The rounding operation creates an error €, that propagates to the output of the DSP
system. As an example of this, consider an A/D followed by a digital filter:
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The quantizer Q is a nonlinearity. We will model it by the additive error source g, = Q[xn] - X,

Assume a fixed-point binary arithmetic representation with B bits plus sign. Also assume Ix,(t)l
< | so that x,, is a fraction. An exact binary representation of x, would generally require an
infinite number of bits:
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where each bit is a zero or a one. The quantizer Q rounds or truncates this representation to B
bits plus sign:
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Suppose Q[*] rounds to B bits plus sign. Then
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Assuming €, is a random variable, uniformly distributed on its range, the mean-squared value of
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Here, E denotes the mean or probabilistic “average” and the above formula is computed as
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where E-lv_B— is the uniform probability density function.

Assuming that {En} is an uncorrelated, identically distributed sequence of random variables, we
can show that the output error of the digital filter is described by
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Example

Given the digital filter below, with A/D quantization noise at its input, find the resulting mean-
squared error at the filter output.
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So, the filter increases the mean-squared value of the A/D quantization noise by a factor of about
eight.

2) Coefficient Inaccuracy
Can be treated deterministically. Suppose the desired infinite-precision frequency response is
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Then the actual frequency response after quantization of the filter coefficients will be
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where 2; = Q[a;].

The result of coefficient inaccuracy is a deterministic degradation in the frequency response:
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A sensitivity analysis can be helpful in determining, for a given filter structure, how badly the
frequency response will be perturbed by a small change in the filter coefficients. Study:
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3a) Multiplication Roundoff Noise

Consider the filter structure
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where the register lengths are indicated at various points in the filter structure. Note that the
multiplier outputs have length 2B + 1 and these must be quantized back to B + 1 bits before they
enter a feedback loop. Otherwise, the required register length will grow without bound.

Here we assume a double-length accumulator, in which case a single quantization occurs after
the accumulator. Alternatively, we could quantize at each multiplier output, individually.

For a typical x,,, we can treat the error {€,} at the internal quantizer as additive, uncorrelated
noise with

-2B
2 2 ’
E { Sn } = =5 (for rounding).




General conceptual setting:
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Let F(z) be the transfer function from the error source (quantizer) to y,. Then for fixed-point
rounding
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In general, F(z) # H(z).

There may be several quantization points in a filter. We generally can assume all error sources
are uncorrelated so that the mean-squared error at the output is the sum of the individual output
mean-squared errors.



3b) Adder Overflow

Without loss of generality assume all quantities are stored as
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B bit fraction

Even if the input satisfies |x,| < 1 for all n, we may have |adder output| > 1. If this happens, we
will have overflow (large error) at the adder output.

Solution: Scale down adder inputs by S to prevent overflow.
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In practice, the scaling operation does not necessitate additional multiplications. S may be a

power of 2, or alternatively, é-can'be incorporated into the a; and you may not care whether the
output is renormalized by S.

We want |p,| < 1. How do we choose S?

Let G(z) be the transfer function from x,, to the adder output prior to scaling. Let g, be the
corresponding unit pulse response. Then:
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(*) is called #; scaling and it will guarantee no overflow at the adder.

Problem: Large S increases roundoff noise at the filter output. There exist alternative scaling
policies. One of these is called ¢, scaling:
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It can be shown that Sy, < S, (and often much less).

With £, scaling, overflow can occur (since S £y is generally less than Sgl) but it is unlikely. If

your system can afford to have very rare overflows, you may choose a less stringent scaling
policy than /4, to keep roundoff noise lower at the filter output.

Example Combined effects of scaling and roundoff noise.
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Assume fixed point, rounding arithmetic with B bits plus sign. Do these things:

a) Scale the filter using #; scaling.
b) Find the MSE due to rounding in terms of 'a' and B.

c) Examine what happens to the MSE as a function of pole location.




Solution

a) With no scaling, the unit-pulse response from the input x,, to the adder output is
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In this example, g, = h,. In general, however, this will not be the case.

To scale the filter, we use (*) to select S as
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b) The transfer function from the quantizer to the filter output is F(z) = S » H(z). Thus,
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As an example, if a = .95, then MSE = 4013 21—2 :

Since 4013 ~ 212, we see that roughly the six lowest bits in the output register would be filled

with roundoff noise.
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Comments:

i)  An actual filter implementation often uses longer internal register lengths (e.g., by 6 bits)
than output register lengths, since there is no reason to present noise to the output.

ii)  Scaling is a problem only for fixed-point arithmetic, not for floating point.

Now, examine what happens to the MSE as a function of pole location.
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Notice that as the pole approaches the unit circle (in this example, as lal — 1), the MSE — oo,
Thus, longer register lengths will be needed if the pole is closer to the unit circle. This
observation is not unique to this example. Recursive filters having sharp transitions in their
frequency response tend to have poles located very near the unit circle. Such filters require long
register lengths.

Example

Find an expression for the mean-squared roundoff noise in the following £-scaled filter.
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The transfer function from the input to the adder output, with no scaling, is

Assume a>0andb > 0.
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Using the ¢ policy, we choose
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Now, to compute the MSE due to roundoff noise, we note that the transfer function from the
quantizer to the filter output is
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3¢) Zero-Input Limit Cycles (only occur in IIR filters)

The output of a stable linear filter must decay to zero if the input drops to zero. However, in an
IR filter, the quantizer or quantizers (nonlinear!) may cause a nonzero periodic output, which is
called a limit cycle.

Why periodic? Consider the following recursive filter, with zero input and finite-length

registers:
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The output must be periodic in this situation because the feedback delay registers can contain
only a finite number of possible pairs of values, so that at some point they must repeat. Once the
contents of the delay registers repeats, the output will become periodic because the contents of
the delay registers is a state of the system, which determines all future outputs.

Example 1
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Yn = Q[xn_%yn-—l]

Assume sign-magnitude rounding, withB=3,x,=0,n20,and y_; =% . (Here, B = 3 would be

unrealistically small for a digital filter, but this choice serves perfectly well as a simple example.)
Also, assume that the quantizer rounds up at the midpoint and that the quantizer operates only on
the bits to the right of the binary point (positive and negative numbers get quantized in a similar
way). Then:
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So, y,, enters the limit cycle % sl o

8’ 8’

§ ® o=

00| —

In this example, the limit cycle occupies only the least significant bit.



