
 © 1996-2000 Berkeley Design Technology, Inc.

Choosing a DSP Processor
Berkeley Design Technology, Inc.

Introduction

DSP processors are microprocessors designed to per-
form digital signal processing—the mathematical ma-
nipulation of digitally represented signals. Digital signal
processing is one of the core technologies in rapidly
growing application areas such as wireless communica-
tions, audio and video processing, and industrial control.
Along with the rising popularity of DSP applications, the
variety of DSP-capable processors has expanded greatly
since the introduction of the first commercially success-
ful DSP chips in the early 1980s. Market research firm
Forward Concepts projects that sales of DSP processors
will total U.S. $6.2 billion in 2000, a growth of 40 per-
cent over 1999. With semiconductor manufacturers vy-
ing for bigger shares of this booming market, designers’
choices will broaden even further in the next few years.

Today’s DSP processors (or “DSPs”) are sophisticat-
ed devices with impressive capabilities. In this paper, we
introduce the features common to modern commercial
DSP processors, explain some of the important differ-
ences among these devices, and focus on features that a
system designer should examine to find the processor
that best fits his or her application.

What is a DSP Processor?

Most DSP processors share some common basic fea-
tures designed to support high-performance, repetitive,
numerically intensive tasks.

The most often cited of these features is the ability to
perform one or more multiply-accumulate operations
(often called “MACs”) in a single instruction cycle. The
multiply-accumulate operation is useful in DSP algo-
rithms that involve computing a vector dot product, such
as digital filters, correlation, and Fourier transforms. To
achieve a single-cycle MAC, DSP processors integrate
multiply-accumulate hardware into the main data path of
the processor, as shown in Figure 1. Some recent DSP
processors provide two or more multiply-accumulate
units, allowing multiply-accumulate operations to be
performed in parallel. In addition, to allow a series of
multiply-accumulate operations to proceed without the
possibility of arithmetic overflow (the generation of
numbers greater than the maximum value the proces-
sor’s accumulator can hold), DSP processors generally
provide extra “guard” bits in the accumulator. For exam-
ple, the Motorola DSP processor family examined in
Figure 1 offers eight guard bits.

A second feature shared by DSP processors is the
ability to complete several accesses to memory in a sin-
gle instruction cycle. This allows the processor to fetch
an instruction while simultaneously fetching operands
and/or storing the result of a previous instruction to
memory. For example, in calculating the vector dot prod-
uct for an FIR filter, most DSP processors are able to per-
form a MAC while simultaneously loading the data
sample and coefficient for the next MAC. Such single-
cycle multiple memory accesses are often subject to
many restrictions. Typically, all but one of the memory
locations accessed must reside on-chip, and multiple
memory accesses can only take place with certain in-
structions. To support simultaneous access of multiple
memory locations, DSP processors provide multiple on-
chip buses, multi-ported on-chip memories, and in some
cases multiple independent memory banks.

A third feature often used to speed arithmetic pro-
cessing on DSP processors is one or more dedicated ad-
dress generation units. Once the appropriate addressing
registers have been configured, the address generation
unit operates in the background (i.e., without using the
main data path of the processor), forming the addresses

FIGURE 1. A representative conventional fixed-point
DSP processor data path (from the Motorola
DSP560xx, a 24-bit, fixed-point processor family).

24 24

Multiplier

ALU

X0

Shifter

Shifter/Limiter

A (56)

X1
Y0
Y1

B (56)

24 24

24 24

5656

56

56 56

24

24

X Data Bus

Y Data Bus

Operand
Registers

Accumulators

PAGE 2 OF 8

 © 1996-2000 Berkeley Design Technology, Inc.

required for operand accesses in parallel with the execu-
tion of arithmetic instructions. In contrast, general-pur-
pose processors often require extra cycles to generate the
addresses needed to load operands. DSP processor ad-
dress generation units typically support a selection of ad-
dressing modes tailored to DSP applications. The most
common of these is register-indirect addressing with
post-increment, which is used in situations where a re-
petitive computation is performed on data stored sequen-
tially in memory. Modulo addressing is often supported,
to simplify the use of circular buffers. Some processors
also support bit-reversed addressing, which increases the
speed of certain fast Fourier transform (FFT) algorithms.

Because many DSP algorithms involve performing
repetitive computations, most DSP processors provide
special support for efficient looping. Often, a special
loop or repeat instruction is provided, which allows the
programmer to implement a for-next loop without ex-
pending any instruction cycles for updating and testing
the loop counter or branching back to the top of the loop.

Finally, to allow low-cost, high-performance input
and output, most DSP processors incorporate one or
more serial or parallel I/O interfaces, and specialized I/O
handling mechanisms such as low-overhead interrupts
and direct memory access (DMA) to allow data transfers
to proceed with little or no intervention from the rest of
the processor.

The rising popularity of DSP functions such as
speech coding and audio processing has led designers to
consider implementing DSP on general-purpose proces-
sors such as desktop CPUs and microcontrollers. Nearly
all general-purpose processor manufacturers have re-
sponded by adding signal processing capabilities to their
chips. Examples include the MMX and SSE instruction
set extensions to the Intel Pentium line, and the extensive
DSP-oriented retrofit of Hitachi’s SH-2 microcontroller
to form the SH-DSP.

In some cases, system designers may prefer to use a
general-purpose processor rather than a DSP processor.
Although general-purpose processor architectures often
require several instructions to perform operations that
can be performed with just one DSP processor instruc-
tion, some general-purpose processors run at extremely
fast clock speeds. If the designer needs to perform non-
DSP processing, then using a general-purpose processor
for both DSP and non-DSP processing could reduce the
system parts count and lower costs versus using a sepa-
rate DSP processor and general-purpose microprocessor.
Furthermore, some popular general-purpose processors
feature a tremendous selection of application develop-
ment tools.

On the other hand, because general-purpose proces-
sor architectures generally lack features that simplify
DSP programming, software development is sometimes
more tedious than on DSP processors and can result in
awkward code that’s difficult to maintain. Moreover, if
general-purpose processors are used only for signal pro-
cessing, they are rarely cost-effective compared to DSP
chips designed specifically for the task. Thus, at least in
the short run, we believe that system designers will con-
tinue to use traditional DSP processors for the majority
of DSP intensive applications. We focus on DSP proces-
sors in this paper.

Applications

DSP processors find use in an extremely diverse ar-
ray of applications, from radar systems to consumer
electronics. Naturally, no one processor can meet the
needs of all or even most applications. Therefore, the
first task for the designer selecting a DSP processor is to
weigh the relative importance of performance, cost, inte-
gration, ease of development, power consumption, and
other factors for the application at hand. Here we’ll brief-
ly touch on the needs of just a few classes of DSP appli-
cations.

In terms of dollar volume, the biggest applications
for digital signal processors are inexpensive, high-vol-
ume embedded systems, such as cellular telephones, disk
drives (where DSPs are used for servo control), and por-
table digital audio players. In these applications, cost and
integration are paramount. For portable, battery-pow-
ered products, power consumption is also critical. Ease
of development is usually less important; even though
these applications typically involve the development of
custom software to run on the DSP and custom hardware
surrounding the DSP, the huge manufacturing volumes
justify expending extra development effort.

A second important class of applications involves
processing large volumes of data with complex algo-
rithms for specialized needs. Examples include sonar
and seismic exploration, where production volumes are
lower, algorithms more demanding, and product designs
larger and more complex. As a result, designers favor
processors with maximum performance, good ease of
use, and support for multiprocessor configurations. In
some cases, rather than designing their own hardware
and software from scratch, designers assemble such sys-
tems using off-the-shelf development boards, and ease
their software development tasks by using existing func-
tion libraries as the basis of their application software.

PAGE 3 OF 8

 © 1996-2000 Berkeley Design Technology, Inc.

Choosing the Right DSP Processor

As illustrated in the preceding section, the right DSP
processor for a job depends heavily on the application.
One processor may perform well for some applications,
but be a poor choice for others. With this in mind, one
can consider a number of features that vary from one
DSP to another in selecting a processor. These features
are discussed below.

Arithmetic Format
One of the most fundamental characteristics of a pro-

grammable digital signal processor is the type of native
arithmetic used in the processor. Most DSPs use fixed-
point arithmetic, where numbers are represented as inte-
gers or as fractions in a fixed range (usually -1.0 to +1.0).
Other processors use floating-point arithmetic, where
values are represented by a mantissa and an exponent as
mantissa x 2 exponent. The mantissa is generally
a fraction in the range -1.0 to +1.0, while the exponent is
an integer that represents the number of places that the
binary point (analogous to the decimal point in a base 10
number) must be shifted left or right in order to obtain
the value represented.

Floating-point arithmetic is a more flexible and gen-
eral mechanism than fixed-point. With floating-point,
system designers have access to wider dynamic range
(the ratio between the largest and smallest numbers that
can be represented). As a result, floating-point DSP pro-
cessors are generally easier to program than their fixed-
point cousins, but usually are also more expensive and
have higher power consumption. The increased cost and
power consumption result from the more complex cir-
cuitry required within the floating-point processor,
which implies a larger silicon die. The ease-of-use ad-
vantage of floating-point processors is due to the fact that
in many cases the programmer doesn’t have to be con-
cerned about dynamic range and precision. In contrast,
on a fixed-point processor, programmers often must
carefully scale signals at various stages of their programs
to ensure adequate numeric precision with the limited
dynamic range of the fixed-point processor.

Most high-volume, embedded applications use fixed-
point processors because the priority is on low cost and,
often, low power. Programmers and algorithm designers
determine the dynamic range and precision needs of their
application, either analytically or through simulation,
and then add scaling operations into the code if neces-
sary. For applications that have extremely demanding
dynamic range and precision requirements, or where
ease of development is more important than unit cost,
floating-point processors have the advantage.

It’s possible to perform general-purpose floating-
point arithmetic on a fixed-point processor by using soft-
ware routines that emulate the behavior of a floating-
point device. However, such software routines are usual-
ly very expensive in terms of processor cycles. Conse-
quently, general-purpose floating-point emulation is
seldom used. A more efficient technique to boost the nu-
meric range of fixed-point processors is block floating-
point, wherein a group of numbers with different mantis-
sas but a single, common exponent are processed as a
block of data. Block floating-point is usually handled in
software, although some processors have hardware fea-
tures to assist in its implementation.

Data Width
All common floating-point DSPs use a 32-bit data

word. For fixed-point DSPs, the most common data
word size is 16 bits. Motorola’s DSP563xx family uses a
24-bit data word, however, while Zoran’s ZR3800x fam-
ily uses a 20-bit data word. The size of the data word has
a major impact on cost, because it strongly influences the
size of the chip and the number of package pins required,
as well as the size of external memory devices connected
to the DSP. Therefore, designers try to use the chip with
the smallest word size that their application can tolerate.

As with the choice between fixed- and floating-point
chips, there is often a trade-off between word size and
development complexity. For example, with a 16-bit
fixed-point processor, a programmer can perform dou-
ble-precision 32-bit arithmetic operations by stringing
together an appropriate combination of instructions. (Of
course, double-precision arithmetic is much slower than
single-precision arithmetic.) If the bulk of an application
can be handled with single-precision arithmetic, but the
application needs more precision for a small section of
the code, the selective use of double-precision arithmetic
may make sense. If most of the application requires more
precision, a processor with a larger data word size is like-
ly to be a better choice.

Note that while most DSP processors use an instruc-
tion word size equal to their data word size, not all do.
The Analog Devices ADSP-21xx family, for example,
uses a 16-bit data word and a 24-bit instruction word.

Speed
A key measure of the suitability of a processor for a

particular application is its execution speed. There are a
number of ways to measure a processor’s speed. Perhaps
the most fundamental is the processor’s instruction cycle
time: the amount of time required to execute the fastest
instruction on the processor. The reciprocal of the in-
struction cycle time divided by one million and multi-

PAGE 4 OF 8

 © 1996-2000 Berkeley Design Technology, Inc.

plied by the number of instructions executed per cycle is
the processor’s peak instruction execution rate in mil-
lions of instructions per second, or MIPS.

A problem with comparing instruction execution
times is that the amount of work accomplished by a sin-
gle instruction varies widely from one processor to an-
other. Some of the newest DSP processors use VLIW
(very long instruction word) architectures, in which mul-
tiple instructions are issued and executed per cycle.
These processors typically use very simple instructions
that perform much less work than the instructions typical
of conventional DSP processors. Hence, comparisons of
MIPS ratings between VLIW processors and conven-
tional DSP processors can be particularly misleading,
because of fundamental differences in their instruction
set styles. For an example contrasting work per instruc-
tion between Texas Instrument’s VLIW TMS320C62xx
and Motorola’s conventional DSP563xx, see BDTI’s
white paper entitled The BDTImark™: A Measure of
DSP Execution Speed, available at www.BDTI.com.

Even when comparing conventional DSP processors,
however, MIPS ratings can be deceptive. Although the
differences in instruction sets are less dramatic than
those seen between conventional DSP processors and
VLIW processors, they are still sufficient to make MIPS
comparisons inaccurate measures of processor perfor-
mance. For example, some DSPs feature barrel shifters
that allow multi-bit data shifting (used to scale data) in
just one instruction, while other DSPs require the data to
be shifted with repeated one-bit shift instructions. Simi-
larly, some DSPs allow parallel data moves (the simulta-
neous loading of operands while executing an
instruction) that are unrelated to the ALU instruction be-
ing executed, but other DSPs only support parallel
moves that are related to the operands of an ALU instruc-
tion. Some newer DSPs allow two MACs to be specified
in a single instruction, which makes MIPS-based com-
parisons even more misleading.

One solution to these problems is to decide on a basic
operation (instead of an instruction) and use it as a yard-
stick when comparing processors. A common operation
is the MAC operation. Unfortunately, MAC execution
times provide little information to differentiate between
processors: on many DSPs a MAC operation executes in
a single instruction cycle, and on these DSPs the MAC
time is equal to the processor’s instruction cycle time.
And, as mentioned above, some DSPs may be able to do
considerably more in a single MAC instruction than oth-
ers. Additionally, MAC times don’t reflect performance
on other important types of operations, such as looping,
that are present in virtually all applications.

A more general approach is to define a set of standard
benchmarks and compare their execution speeds on dif-
ferent DSPs. These benchmarks may be simple algo-
rithm “kernel” functions (such as FIR or IIR filters), or
they might be entire applications or portions of applica-
tions (such as speech coders). Implementing these
benchmarks in a consistent fashion across various DSPs
and analyzing the results can be difficult. Our company,
Berkeley Design Technology, Inc., pioneered the use of
algorithm kernels to measure DSP processor perfor-
mance with the BDTI Benchmarks™ included in our in-
dustry report, Buyer’s Guide to DSP Processors. Several
processors’ execution time results on BDTI’s FFT
benchmark are shown in Figure 2.

Two final notes of caution on processor speed: First,
be careful when comparing processor speeds quoted in
terms of “millions of operations per second” (MOPS) or
“millions of floating-point operations per second”
(MFLOPS) figures, because different processor vendors
have different ideas of what constitutes an “operation.”
For example, many floating-point processors are
claimed to have a MFLOPS rating of twice their MIPS
rating, because they are able to execute a floating-point
multiply operation in parallel with a floating-point addi-
tion operation.

Second, use caution when comparing processor
clock rates. A DSP’s input clock may be the same fre-
quency as the processor’s instruction rate, or it may be
two to four times higher than the instruction rate, de-
pending on the processor. Additionally, many DSP chips
now feature clock doublers or phase-locked loops

0

10

20

30

40

50

60

70

FIGURE 2. Execution times for a 256-point complex FFT,
in microseconds (lower is better).

Note: Times are calculated for the fastest version of each processor projected
to be available in June 2000. For the processors with on-chip cache, “-C”
indicates performance with cache pre-loaded.

T
M

S
32

0C
62

03
(3

00
 M

H
z)

T
M

S
32

0C
67

01
(1

67
 M

H
z)

M
S

C
81

01
(3

00
 M

H
z)

T
M

S
32

0C
54

16
(1

60
 M

IP
S

)

D
S

P
56

31
1

(1
50

 M
IP

S
)

Floating-PointFixed-Point

P
en

tiu
m

 II
I-

C
(1

 G
H

z)

P
en

tiu
m

 II
I

(1
 G

H
z)

PAGE 5 OF 8

 © 1996-2000 Berkeley Design Technology, Inc.

(PLLs) that allow the use of a lower-frequency external
clock to generate the needed high-frequency clock on-
chip.

Memory Organization
The organization of a processor’s memory subsystem

can have a large impact on its performance. As men-
tioned earlier, the MAC and other DSP operations are
fundamental to many signal processing algorithms. Fast
MAC execution requires fetching an instruction word
and two data words from memory at an effective rate of
once every instruction cycle. There are a variety of ways
to achieve this, including multiported memories (to per-
mit multiple memory accesses per instruction cycle),
separate instruction and data memories (the “Harvard”
architecture and its derivatives), and instruction caches
(to allow instructions to be fetched from cache instead of
from memory, thus freeing a memory access to be used
to fetch data). Figures 3 and 4 show how the Harvard
memory architecture differs from the “Von Neumann”
architecture used by many microcontrollers.

Another concern is the size of the supported memory,
both on- and off-chip. Most fixed-point DSPs are aimed
at the embedded systems market, where memory needs
tend to be small. As a result, these processors typically
have small-to-medium on-chip memories (between 4K
and 64K words), and small external data buses. In addi-
tion, most fixed-point DSPs feature address buses of 16
bits or less, limiting the amount of easily-accessible ex-
ternal memory.

Some floating-point chips provide relatively little (or
no) on-chip memory, but feature large external data bus-
es. For example, the Texas Instruments TMS320C30
provides 6K words of on-chip memory, one 24-bit exter-
nal address bus, and one 13-bit external address bus. In
contrast, the Analog Devices ADSP-21060 provides 4
Mbits of memory on-chip that can be divided between
program and data memory in a variety of ways.

As with most DSP features, the best combination of
memory organization, size, and number of external bus-
es is heavily application-dependent.

Ease of Development
The degree to which ease of system development is a

concern depends on the application. Engineers perform-
ing research or prototyping will probably require tools
that make system development as simple as possible. On
the other hand, a company developing a next-generation
digital cellular telephone may be willing to suffer with
poor development tools and an arduous development en-
vironment if the DSP chip selected shaves $5 off the cost
of the end product. (Of course, this same company might
reach a different conclusion if the poor development en-
vironment results in a three-month delay in getting their
product to market!)

That said, items to consider when choosing a DSP are
software tools (assemblers, linkers, simulators, debug-
gers, compilers, code libraries, and real-time operating
systems), hardware tools (development boards and emu-

Processor Core

Data Bus 1

Memory A

Address Bus 1

Memory B

Data Bus 2

Address Bus 2

FIGURE 3. A Harvard architecture, common to many
DSP processors. The processor can simultaneously
access the two memory banks using two independent
sets of buses, allowing operands to be loaded while
fetching instructions.

Processor Core

Data Bus

Memory

Address Bus

FIGURE 4. The Von Neumann memory architecture,
common among microcontrollers. Since there is only
one data bus, operands cannot be loaded while
instructions are fetched, creating a bottleneck that
slows the execution of DSP algorithms.

PAGE 6 OF 8

 © 1996-2000 Berkeley Design Technology, Inc.

lators), and higher-level tools (such as block-diagram-
based code-generation environments). A design flow us-
ing some of these tools is illustrated in Figure 5.

A fundamental question to ask when choosing a DSP
is how the chip will be programmed. Typically, develop-
ers choose either assembly language, a high-level lan-
guage—such as C or Ada—or a combination of both.
Surprisingly, a large portion of DSP programming is still
done in assembly language. Because DSP applications
have voracious number-crunching requirements, pro-
grammers are often unable to use compilers, which often
generate assembly code that executes slowly. Rather,
programmers can be forced to hand-optimize assembly
code to lower execution time and code size to acceptable
levels. This is especially true in consumer applications,
where cost constraints may prohibit upgrading to a high-
er-performance DSP processor or adding a second pro-
cessor.

Users of high-level language compilers often find
that the compilers work better for floating-point DSPs
than for fixed-point DSPs, for several reasons. First,
most high-level languages do not have native support for
fractional arithmetic. Second, floating-point processors
tend to feature more regular, less restrictive instruction
sets than smaller, fixed-point processors, and are thus
better compiler targets. Third, as mentioned, floating-

point processors typically support larger memory spaces
than fixed-point processors, and are thus better able to
accommodate compiler-generated code, which tends to
be larger than hand crafted assembly code.

VLIW-based DSP processors, which typically use
simple, orthogonal RISC-based instruction sets and have
large register files, are somewhat better compiler targets
than traditional DSP processors. However, even compil-
ers for VLIW processors tend to generate code that is in-
efficient in comparison to hand-optimized assembly
code. Hence, these processors, too, are often pro-
grammed in assembly language—at least to some de-
gree.

Whether the processor is programmed in a high-level
language or in assembly language, debugging and hard-
ware emulation tools deserve close attention since, sad-
ly, a great deal of time may be spent with them. Almost
all manufacturers provide instruction set simulators,
which can be a tremendous help in debugging programs
before hardware is ready. If a high-level language is
used, it is important to evaluate the capabilities of the
high-level language debugger: will it run with the simu-
lator and/or the hardware emulator? Is it a separate pro-
gram from the assembly-level debugger that requires the
user to learn another user interface?

Most DSP vendors provide hardware emulation tools
for use with their processors. Modern processors usually
feature on-chip debugging/emulation capabilities, often
accessed through a serial interface that conforms to the
IEEE 1149.1 JTAG standard for test access ports. This
serial interface allows scan-based emulation—program-
mers can load breakpoints through the interface, and
then scan the processor’s internal registers to view and
change the contents after the processor reaches a break-
point. Scan-based emulation is especially useful because
debugging may be accomplished without removing the
processor from the target system. Other debugging meth-
ods, such as pod-based emulation, require replacing the
processor with a special processor emulator pod.

Off-the-shelf DSP system development boards are
available from a variety of manufacturers, and can be an
important resource. Development boards can allow soft-
ware to run in real-time before the final hardware is
ready, and can thus provide an important productivity
boost. Additionally, some low-production-volume sys-
tems may use development boards in the final product.

Multiprocessor Support
Certain computationally intensive applications with

high data rates (e.g., radar and sonar) often demand mul-
tiple DSP processors. In such cases, ease of processor in-

Linker
Assembly

Object Code
Libraries

Object Code

Binary
Executable

Code

Assembly
Libraries

Debugger

DSP Development
Board

In-Circuit Emulator

Final ProductSimulator

Assembler

FIGURE 5. The interaction among assembly
language development tools. These tools include
assemblers, linkers, libraries, simulators,
development hardware, and in-circuit emulators.

PAGE 7 OF 8

 © 1996-2000 Berkeley Design Technology, Inc.

terconnection (in terms of time to design interprocessor
communications circuitry and the cost of linking proces-
sors) and interconnection performance (in terms of com-
munications throughput, overhead, and latency) may be
important factors. Some DSP families—notably the An-
alog Devices ADSP-2106x—provide special-purpose
hardware to ease multiprocessor system design.

ADSP-2106x processors feature bidirectional data
and address buses coupled with six bidirectional bus re-
quest lines. These allow up to six processors to be con-
nected together via a common external bus with elegant
bus arbitration. Moreover, a unique feature of the ADSP-
2106x processor connected in this way is that each pro-
cessor can access the internal memory of any other
ADSP-2106x on the shared bus. Six four-bit parallel
communication ports round out the ADSP-2106x’s par-
allel processing features. Interestingly, Texas Instru-
ment’s newest floating-point processor, the VLIW-based
TMS320C67xx, does not currently provide similar hard-
ware support for multiprocessor designs, though it is
possible that future family members will address this is-
sue.

Power Consumption and Management
DSPs are increasingly being used in portable applica-

tions (such as cellular phones and portable audio players)
where power consumption is a major concern. As a re-
sult, many processor vendors are reducing processor
supply voltages and adding power management features
to give programmers greater influence over processor
power consumption. Power management features avail-
able on some DSPs include:

• Reduced voltage operation. Many vendors offer
low-voltage (3.3-, 2.5-, or 1.8-volt) versions of their
DSP processors. These processors consume far less
power than five-volt equivalents at the same clock
rate.

• “Sleep” or “idle” modes. Most DSPs feature modes
that turn off the processor’s clock to all but certain
sections of the processor, reducing power consump-
tion. In some cases, any unmasked interrupt will
bring the processor back from sleep mode, while in
other cases, only a few designated external interrupt
lines will wake the processor. Some processors pro-
vide multiple sleep modes with different power sav-
ings and wakeup latencies.

• Programmable clock dividers. Some DSPs allow
the processor’s clock frequency to be varied under
software control to use the minimum clock speed
required for a particular task.

• Peripheral control. Some DSPs allow the program-
mer to disable peripherals that are not in use.

Regardless of power management features, it is often
difficult for design engineers to obtain meaningful pow-
er consumption figures for DSPs. This is because a
DSP’s power consumption may vary by as much as a
factor of three depending on the instructions it executes.
Unfortunately, most vendors publish only “typical” or
“maximum” power consumption numbers, usually with-
out specifying what constitutes a “typical” program. One
exception is Texas Instruments, which provides applica-
tion notes that detail power consumption vs. instruction
type and processor configuration.

Cost
Obviously, processor cost is a major concern for

products that are to be produced in volume. For such ap-
plications, designers try to use the lowest cost DSP that
meets the requirements of the application, even though
such devices may be considerably less flexible and more
difficult to program than costlier processors. Among
processor families, the least expensive family members
tend to have significantly fewer features, less on-chip
memory, and lower performance than the more expen-
sive members.

A key factor in processor pricing is the dependence
of price on device packaging. For example, plastic thin
quad flat pack (PQFP and TQFP) packages can be signif-
icantly less expensive than pin grid array (PGA) packag-
es.

Finally, when considering prices, it is important to
remember two things. First, processor prices are contin-
ually falling. Second, prices are strongly dependent on
quantity, and prices for, say, a quantity 100,000 order
may be significantly lower than for a quantity 1,000 or-
der.

Summary

Despite some manufacturers’ claims, there isn’t a
single best DSP chip. Rather, the right DSP depends on
the application; a good choice for one application might
be a poor choice for another. In this paper we have re-
viewed a number of criteria useful for choosing a DSP:
arithmetic format, data width, speed, memory organiza-
tion, ease of development, multiprocessor support, pow-
er consumption, and cost. Which of these are most
important is a decision the system designer must make
based on his or her application.

We conclude by mentioning two trends in DSP pro-
cessor design. First, we expect to see more DSP proces-

PAGE 8 OF 8

 © 1996-2000 Berkeley Design Technology, Inc.

sors tailored for specific high-volume applications, like
cellular phones and portable digital audio players. The
processors will integrate more system functions, such as
analog-to-digital converters and LCD controllers, in an
effort to reduce product cost and parts count. Second, we
believe that more processors will be sold as licensable
core designs, such as the Oak, Teak, and Palm cores of-
fered by DSP Group, and the Carmel and TriCore cores
offered by Infineon. As EDA (electronic design automa-
tion) tools advance in sophistication, system designers
will find it easier to modify DSP cores and add custom
peripherals to create highly specialized, cost-effective
solutions for high-volume applications.

References

[1] Buyer’s Guide to DSP Processors, Berkeley, Cali-
fornia: Berkeley Design Technology, Inc., 1994,
1995, 1997, 1999. This 946-page technical report
contains feature analyses and extensive benchmark-
ing data for most popular DSP processors. The
report provides profiling data from actual applica-
tions, such as modems and vocoders, to help design-
ers assess the importance of specific processor
features. Excerpts from this report, as well as a
pocket guide to DSP processors, are available on the
World Wide Web at www.BDTI.com.

[2] Phil Lapsley, Jeff Bier, Amit Shoham, and Edward
A. Lee, DSP Processor Fundamentals: Architec-
tures and Features, Berkeley, California: Berkeley
Design Technology, Inc., 1996. An introductory
textbook on DSP processor architectures which dis-
cusses how chip design affects performance.

[3] Will Strauss, DSP Strategies 2002, Tempe, Arizona:
Forward Concepts, 1999. A 600-page report on the
DSP chip market.

About Berkeley Design Technology

Berkeley Design Technology, Inc. (BDTI) is a soft-
ware and technical services company focused on digital
signal processing (DSP) technology. The company was
founded by U.C. Berkeley faculty and researchers.

BDTI specializes in the analysis, benchmarking,
evaluation, and development of technology used to im-
plement DSP applications. Specifically, the company:

• Performs in-depth technical evaluations of micro-
processors.

• Develops DSP application software and firmware.

• Publishes technical reports and books on DSP tech-
nology, including Buyer's Guide to DSP Processors,

Inside the Infineon Carmel, and DSP Processor
Fundamentals.

• Analyzes DSP algorithms and applications.

• Evaluates design tools and advises on tool selection
and design methodologies.

• Develops specifications and recommendations for
new DSP processors, software, and tools.

• Provides DSP-related training classes.

BERKELEY DESIGN TECHNOLOGY, INC.
2107 Dwight Way, Second Floor

Berkeley, CA 94704 USA
(510) 665-1600

email: info@BDTI.com

EUROPE JAPAN
Cornelius Kellerhoff

International Representatives

Technology Products
Dusseldorf, Germany

 +49 (211) 467 998
Fax: +49 (211) 467 999

niels@BDTI.com

Shinichi Hosoya
Japan Kyastem Co

Tokyo, Japan
 +81 (425) 23 7176

Fax: +81 (425) 23 7178
bdt-info@kyastem.co.jp

http://www.BDTI.com

Fax: (510) 665-1680

