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TecForum Outline

• Introduction – 30 min 

• The ESL Flow – 10 min 

• Specification and Analysis – 20 min

• Pre-Partitioning Analysis, and Partitioning – 25 min

• Break – 10 min

• Post-Partitioning Analysis – 15 min

• Verification – 30 min 

• HW and SW Implementation – 25 min

• Summary, Futures and Conclusions – 15 min



Introduction



3/16/2007
Copyright © Brian Bailey, Grant Martin 

and Andrew Piziali 2007
4

The Authors

Brian Bailey Grant Martin Andrew Piziali
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The Book

Due out March 2007

From Elsevier-Morgan Kaufmann
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Why did we write it?

• “There is a tide in the affairs of men, Which taken at the 
flood, leads on to fortune. Omitted, all the voyage of their 
life is bound in shallows and in miseries. On such a full 
sea are we now afloat. And we must take the current 
when it serves, or lose our ventures.”
– William Shakespeare

• The time is ripe
– We can see real ESL taking shape

– We can see real usage of some of the current ESL tools 
occurring

– Research concepts are now more ready to become practical 
steps in the design and verification flow
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What makes ESL different?

Tools

IP

HW SW

• ESL crosses all the 
boundaries

• IP models drive ESL 
as much as tools

• ESL that doesn’t 
include SW is not ESL!

ESL
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What makes ESL different?

• Abstraction is possible
– Model speed-accuracy tradeoffs

• Essential

• Worthwhile

• Possible

• Open Source
– SystemC as an example (specific community source 
model)

– Existence drove modeling and experiments

– Standardization ensures value of tool and model 
investments

– OSCI Reference has kept a lid on prices and 
revenues
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A brief look at history

• Those who do not remember the 

past are condemned to repeat it.

–George Santayana
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Motivations

• Consider a device:

• 3G cell phone/data terminal:
– integrated Global Positioning System (GPS) device

– digital camera

– video/MP3

• Acts as:
– entertainment center

– web terminal 

– personal information management device

• With Wi-Fi or Bluetooth connectivity

• How to design, implement and verify?

• “…the increasing failure of traditional methodologies to 
cope with the burgeoning system algorithm content 
necessitated by the integration of so much functionality.”
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Historical Categories of ESL

• Behavioral Modeling

– Leading to “Virtual System Prototypes” (VSP)

• (after Graham Hellestrand, EST – Embedded 

Systems Technology)

• Automated Implementation of Fixed-

Function Hardware

• Automated Implementation of 

Programmable Hardware
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Historical Examples:  

Behavioral Modeling

Function-architecture

Co-design:

The Late, Lamented

‘Felix’ (VCC) (1997+)
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Historical Examples:

Automated Implementation of Fixed-

Function Hardware

Synopsys Behavioral

Compiler

Book by David Knapp, 

Father of Behavioral 

Compiler

Prentice-Hall PTR

June 1996!
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What can we learn from 

history?

• Standardized capture mechanisms (e.g. languages) are 
vital to promote model existence
– SystemC

• Model interoperability is key

• IP-driven design at ESL level is driven by model 
availability

• Speed / accuracy tradeoffs are important

• The natural form for algorithm implementation is “C” (or 
variants)

• New implementation technologies fit design niches
– Hyping them as universal solutions is counter-productive
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Examples: academic and open 

source

• Polis

• Ptolemy

• SpecC

• OSCI SystemC

• SPARK
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Current examples:  industrial

• Behavioral modeling/VSP

– CoWare Platform Architect

– ARM Realview ESL

– Synopsys System Studio/Virtio

– VaST

– Virtutech ….
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Current examples: industrial

• Automatic implementation of fixed-function HW:
– Algorithm modeling:  Matlab/Simulink, SPW, …

– High-level synthesis:  Forte, Mentor Catapult, 
Bluespec, …

• Automatic implementation of programmable HW:
– Tensilica Xtensa/XPRES

– Critical Blue

– Synfora

– Target Compiler Technologies

– CoWare

– ARC

– ARM OptimoDE

– Improv Systems
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Example of possible value: 

VSP

• System architectural design, analysis, optimization, and 
verification
– Estimate system performance before implementation 

– Analytical HW/SW and SW/SW partitioning over multiple processors

• Start application software development well in advance of 
hardware

• Early identification of system non-determinism

• Execute HW and HW/SW co-verification orders of 
magnitude faster than RTL/C

• Significantly reduce overall development time, effort and 
risk
– “green field” or “blank sheet” designs 

– platform-based derivative designs
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Entering the mainstream

• Who bears the Risk?

– System Architects

– RTL Teams

– SW Teams

– ASIP design

• Impact of ESL on Commercial EDA

– The “Big 3”
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Taxonomy

• Enables the definition of models

and terms in a more precise manner

• Based on a long line of work (RASSP, 
VSIA)
– B. Bailey, G. Martin, and T. Anderson, eds, Taxonomies for the 
Development and Verification of Digital Systems, Springer 
Science+Business Media, New York, 2005.

• Maintains most of the notion of abstraction 
from VSIA work
– Temporal, Data abstraction
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Taxonomy – for ESL

• Adds three new axes to define attributes of 

the system:

– Computation

– Communications

– Configurability

• All attributes and abstractions are 

orthogonal

– With some linking through practicalities
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Taxonomy Axes
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Communications vs

Computation
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Taxonomy Examples

An HDL

Generic C

SystemC



The ESL Flow
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The Flow

Software 

Implementation

Hardware 

Implementation

Specification and Modeling

Post-Partitioning Verification

Post-Partitioning Analysis

Pre-Partitioning Analysis

Partitioning

Implementation Verification
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Specification and Modeling

• Use natural language specifications and 

executable specifications

• Manage complexity

• Track requirements with a tool

• Choose a specification language

• Consider model-based development
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Pre-Partitioning Analysis

• Explore spectrum of algorithmic tradeoffs

• Time, space, power, complexity, TTM

• Dynamic analysis using executable specs

• Static analysis

– Reliability, maintainability, usability and 

criticality

• Consider platform-based design



3/16/2007
Copyright © Brian Bailey, Grant Martin 

and Andrew Piziali 2007
29

Partitioning

• Functional decomposition

• Architecture description (structural 

decomposition)

• Mapping (functional to architecture)

• Hardware partition

• Software partition

• Reconfigurable computing

• Communication implementation
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Post-Partitioning Verification

• Has the intended behavior been 
preserved?

• Verification planning

1. Quantify scope of the verification problem

2. Specify solution to the verification problem

• Implement verification environment

• Bring-up and regressions

• Analyze failures and coverage

• Employ abstract coverage
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Post-Partitioning Analysis

• Refine architectural models to reflect 

partitioning choices

• Choose appropriate HW and SW models

• Explore the design space

• Employ dynamic and static analysis

– Functional, performance, interface, power, 

area, cost and debug capability analyses
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Hardware Implementation

• Create HW model to be synthesized

• Choose a hardware implementation
– extensible processors, DSP coprocessors, 
customized VLIW coprocessors, ...

• ESL synthesis piggybacks on RTL flow:

8. Verify RTL

9. Synthesize RTL to gates

10.Verify timing

11.Place and route gates

12.Design rule check

13.Generate GDSII

1. System specification

2. HW/SW partitioning

3. Virtual prototype

4. Transaction-level design

5. Transaction level

6. Verification

7. ESL synthesis to RTL
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Software Implementation

• Use ESL models to prototype software 

components

• Estimate algorithm performance

• Choose ESL specification language

• Consider debugging environment

• Use ESL model for runtime development
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Implementation Verification

• Clear box vs. opaque box verification

• Compare implementation against post-

partitioned models

• Employ positive and negative verification

• Use formal analysis (PSL, SVA)

• Use verification IP

• Measure and analyze coverage (again!)

• Accelerate execution when necessary



Specification and Modeling
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Specification

• A specification defines the functional and 
non-functional aspects of a system that is 
devoid of implementation decisions

– For ESL it is important that decisions about 
HW, SW, Architecture etc., are not embedded 
in the specification

• Architectural decisions are made to refine 
a specification towards implementation

– Architectural, micro-architecture, fabrication 
technologies…
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Natural language or 

executable?

• Natural languages are more expressive

– Easier for humans to navigate

– But subject to ambiguity

– And more difficult for computers to navigate

• Requirements are easier to automate

– And easier to be implementation independent

– Most likely to lead into verification flow

• Verification Planning

• Coverage, Properties
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Multiple Aspects

• Need to specify multiple aspects

– Functionality
• Includes HW, SW, mechanical…

– Architecture
• Solution structure

• Constraints
– Power, performance, cost…

– Mapping
• Used to be called HW/SW co-design

• Today the scope is broader
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Modeling

• A model is a description or analogy used to help 
understand something that cannot be directly 
observed
– a model employs abstraction that can hide 
unnecessary details and thus highlight the important 
aspects of the model, making them more 
comprehensible

– In general we can only deal with a finite set of issues 
at a time, so we use abstraction to reduce the number 
visible

• Implies that you need different models to 
analyze different aspects of a system
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Requirements

• Requirements emerge from the problem domain

• Requirements management is a process that:

– Takes care of making all requirements visible and 

traceable

• A requirement management system depends on 

the size and complexity of the organisation

– Placing trust only in paper documents will not suffice

– Some degree of automation is required



3/16/2007
Copyright © Brian Bailey, Grant Martin 

and Andrew Piziali 2007
41

Requirements Management

DetailDetailDetailDetailDetailDetailDetailDetail

FeatureFeatureFeatureFeatureFeatureFeatureFeatureFeatureRequirementRequirementRequirementRequirementRequirementRequirementRequirementRequirement

1...N

0...N

0...N

1...N

0...N

SubSubSubSub----featurefeaturefeaturefeatureSubSubSubSub----featurefeaturefeaturefeature

Change orderChange orderChange orderChange orderChange orderChange orderChange orderChange order

Customer’s understanding of 
the need

Features and Subfeatures represent the 
product/component management and 
implementation view of the supplier

Releasing provides 
planning view to 
implementation

ReleaseReleaseReleaseReleaseReleaseReleaseReleaseRelease
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New

Studied

Planned

Accepted

In Progress

Closed

Postponed

Rejected

Study

Proposed

Planned

Released

Integrated

Identified Identified

Studied

Proposed

Planned

Ready to be 
Released

Released

Integrated

Cancelled

Released

Planned

RequiremementRequiremementRequiremementRequiremement FeatureFeatureFeatureFeature SubSubSubSub----featurefeaturefeaturefeature ReleaseReleaseReleaseRelease

Requirements Documents
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Solutions

• Commercial tools
– DOORS,

– Caliber-RM,

– PACE,

– RMTrack,

– Team-Trace

• References
– Woodruff, Wayne, “Requirements Management for Small 

Organizations”, A Field Guide to Effective Requirements 
Management Under SEI’s Capability Maturity Model, Rational 
Software Corporation, 1997

– Sud, Rajat R. and Arthur, James, “Requirements Management 
Tools: A Qualitative Assessment”, Department of Computer 
Science, Virginia Tech, Blacksburg, VA 24060 USA, 2003
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Specification Languages

• Multiple Domains
– Dataflow / Control flow

– Protocol Stacks

– Embedded Systems

• Multiple Viewpoints
– Algorithmic

– Functional

– Behavioral
• Transaction level No one language today can

properly address them all

Functional ModelBehavioral Model

Note that neither defines abstraction
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Specification Languages

• Leading Candidates

– MATLAB

– Rosetta

– SystemC

– SDL

– UML

– Bluespec

• Ideal solution would to add aspect-oriented 

constructs to a specification language

– An EDA example is the e language
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The Prescription

• Specification should be captured as 

formally as possible

– Executable if it adds value and can be 

independent of implementation

– Requirements should be formalized and 

tracked

– Use natural language docs to fill in the blanks

• Concentrate on new functionality

• Specification should be refined over time



Pre-Partitioning Analysis, and 

Partitioning
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Pre-Partitioning Analysis

• Static analysis of specifications

• Impact of platform-based design

• Dynamic analysis

• Algorithmic analysis

• Analysis scenarios

• Downstream use of results

• Case study
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Static Analysis

• Software project estimation
– AJ Albrecht, function point analysis (1979)

– Tom DeMarco, function ! Metrics (1982)

– International Function Point User Group (1986 to today)

• Analysis of HW and Systems
– William Fornaciari and colleagues, CEFRIEL (Milano)

– Designs in VHDL, Occam2, C, UML

– Predicting:

• Power estimation

• Software execution time

• Development cost, size, including reuse; product cost

– Performance usually a constraint

– Very difficult to separate pre- from post-partitioning
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Static Analysis

• “ility” analysis

– Reliability, maintainability, usability, 
criticality…

– Mil/aerospace (MIL-STD-217)

– Hierarchical combination of predictors for 
subsystems

– Depends on accurate subsystem and 
component models

– Difficult to gather usable historical data in 
many embedded systems and teams
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Requirements Analysis

• To support traceability

• To help define verification and validation 

tests

• Can be used to help define 

“implementation weight” of a specification 
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Impact of platform-based 

design

• If creating a derivative of a defined 
platform

– Apply analysis methods to new or revised 
portions of platform 

– Try to avoid being biased by partitioning 
decisions already embedded in the platform
• New functions tending to software do not have to 
just run on existing processors

• Analyze before partitioning – establish 
requirements/needs before deciding on HW vs. 
SW
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Dynamic Analysis

• Based on executable models

• Based on simulation

• Can estimate
– Computational “burden”

– Communications “burden”

– Power/energy “burden”

• Avoid bias
– Models are usually partitioned – need NOT imply final 
partitioning

– Executable models contain implementation “artifacts”
• Carefully separate out characteristics that are ESL level from 
those that are artifacts
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Algorithmic Analysis

• One of the oldest and most widely used areas of 

practical ESL

• Several long-standing commercial tools

– SPW:  Comdisco, Cadence (Alta), CoWare

– The Mathworks Matlab/Simulink

– Synopsys SystemStudio (many incarnations; best 

known was COSSAP)

– State Machine tools from Mathworks (StateFlow), 

UML providers (IBM/Rational, Telelogic iLogix

Rhapsody, Artisan SW tools, Esterel Technologies, …
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Research Tools

• Ptolemy – UC Berkeley

• POLIS/Metropolis – UC Berkeley

• SpecC – UC Irvine

• ….



3/16/2007
Copyright © Brian Bailey, Grant Martin 

and Andrew Piziali 2007
56

Ptolemy Example
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Analysis Scenarios

• Signal processing algorithms
– Wireless and wired communications

– Bit error rate (BER), Frame error rate (FER)

– In the context of defined, parameterised channel models

– Algorithms defined and inherent BER, FER determined when simulated with 
channel model for a particular communications protocol

– Gradual refinement into partitioned, post-partitioned implementation possible
• Floating point to fixed point mapping

• DSP or custom HW targets

• Eg. Iridium SPW example from mid-1990s

– Filter design

– Software-designed radio

• Most successful uses of these toolsets tends to focus on communications
– Dataflow paradigm

– Possible to take into implementations through a flow

– Demonstrated success
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Downstream use of results

• Classic uses illustrated by SPW, Cossap, Mathworks
Simulink/Matlab:
– Floating-point, fixed-point models, results used as golden 

verification environments for HW/SW implementations 

– Algorithmic specifications drive software code generation for 
target processors and DSPs

– Algorithmic specifications that can drive hardware code 
generation for RTL level synthesis

– Co-simulation between system-level simulation, RTL simulation, 
and software execution of code on instruction set simulators

• Emerging:  input into Behavioural/High-level/ESL 
synthesis
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Case study:  JPEG encoding

• Basic algorithm partitioned into sub-
sections

• Mapped to configurable processors (5)

• Used to estimate computational and 
communications burden of algorithm as 
expressed in code

• Important not to be biased by particular 
case study partitioning in drawing 
conclusions
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JPEG encoding
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Computational Burden

67.4 M98.6 M122.5 M1024 x 1024

85.5 M256 x 256

21.4 M128 x 128

315 K342 K386 K2.03 M64 x 64

636 K32 x 32

JPEG (Huffman) 

encoding
DCT

Color

Conversion

Sum of 

system 

cycles

Picture Size



3/16/2007
Copyright © Brian Bailey, Grant Martin 

and Andrew Piziali 2007
62

Case Study Design Space 

Exploration

• To process one 1024 x 1024 size picture 
in 1 second, assuming instructions per 
cycle ~ 1, run single processor at 300 MHz

• To do it in ½ second – HW or 
multiprocessor

• 2 processor solution – first at 250 MHz, 
second at 350 MHz (DCT+Huffman on 2nd)

• 3 processor solution – 400, 300, 200 MHz 
– does it in ~ 1/3 second 
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The Prescription

• Use specifications for analysis wherever 
possible

• Avoid “paralysis by analysis”

• Avoid “death by simulation”

• Simulate executable specs but separate 
out implementation artifacts

• Rich set of algorithmic analysis tools 
available

• Keep an eye on new methods and tools
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Partitioning

• “the process of subdividing an initial specification for a system, 
which is generally defined by a monolithic natural language 
document, executable specification, or legacy design, or a 
combination of all three, into a set of potentially concurrent 
cooperating processes, each of which may be described by 
documents, executable models, or legacy designs, or a combination 
of these forms, and of assigning them to a set of more or less 
abstract resources, representing processors for software, silicon 
area or IP blocks for hardware, communication channels, and 
storage resources (e.g., buses, memories)”
– Take a specification

– Chop it into pieces

– Don’t worry if the pieces need to operate concurrently

– Assign the pieces to architectural resources
• Processors

• HW blocks

• Communication channels

• Storage
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Partitioning

• Functional Decomposition

• Defining Target Architecture

• Mapping Function to Architecture

• Implementation

– SW

– HW

– Reconfigurable

• Specify, implement and optimize the 
interfaces
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Functional Decomposition

• Use a (set of) functional concurrent 

executable specification language(s)

• Start from a sequential language and 

automatically extract concurrency
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Many functional specification 

languages

• As discussed earlier:

– Commercial tools and research languages

– Simulink, MATLAB, Lustre, Esterel, UML, 
SDL, SPW, Ptolemy, SystemC…

• Divide the specification(s) into islands of 
“models of computation”

– FSMs, discrete event, dataflow

• Link them together with specification 
models for each island 
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Extract Concurrency

• Start with a single specification language, 
usually sequential:

– E.g. C/C++/SystemC

• Research and commercial approaches to 
mapping this into partitioned systems

– E.g. Synfora PicoExpress

– Tensilica XPRES

– Research using compiler technology at 
several universities
• Convert loop nests into potentially concurrent HW
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Defining Target Architecture

Stylized architecture

NXP Semiconductors Nexperia Platform
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Platform based partitioning
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Mapping Function to 

Architecture

Walking through

The design space

……..after Gajski
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Metropolis
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Implementation: HW

• Using a platform-based approach:

– Becomes a configuration process for the 

platform, with

• A minimal amount of new HW block creation

• Avoid new HW at all costs

• For flexibility and risk reduction, map new function 

to SW on processors if at all possible

• Configurable processors are an interesting way to 

have SW often with HW performance
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Implementation: SW

• “SW-SW Co-design”: Partitioning over multiple 
processors
– Heterogeneous

• Classic:   RISC + DSP

– Homogeneous
• Classic:  Symmetric MultiProcessors (SMP)

• Partitioning into multiple tasks
– Task scheduling and dependencies

– Inter-task communications
• APIs:  Message passing, shared memory

– Real-time dynamic vs. static or quasi-static 
scheduling

– Worst case execution time (WCET) estimation



3/16/2007
Copyright © Brian Bailey, Grant Martin 

and Andrew Piziali 2007
75

Operating systems and 

memory

• Provide resources for SW task 

management

• Commercial RTOSs

• Application layering and APIs

• Hardware dependent SW

• Custom (synthesized) OSs

• Memory partitioning and optimization

– Atomium (IMEC – Catthoor et al)
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Implementation: 

Reconfigurable

• New implementation option when added to classical HW 
and SW options

• Many possibilities exist between pure ASIC/ASSP, pure 
SW, pure FPGA
– ASIC with FPGA region

– FPGA with fixed cores (eg. Xilinx Virtex series)

– Custom design with reconfigurable region

– Configurable processor with instruction extensions mapped to 
reconfigurable logic (cf. Stretch)

• Various programming models and tools exist
– Eg. Academic research (GARP), Simulink based (BEE)

– Industrial:  Stretch, Xilinx, Atmel, Altera
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Interfaces

• Communication template instantiation

– Early example is CoWare (Leuven research, 

mid-1990s; was commercial “N2C”)

– Many other examples exist

• Interface synthesis

– Automatic generation of adaptors between 

incompatible communications layers

– E.g. FSM based adaptors 

– Research (Passerone et. Al.)



Post-Partitioning Analysis
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Post-Partitioning Analysis

• We now have hardware and software

• Function and architecture have merged

• Need to verifying partitioning choices

• Need to establish the models and 

framework necessary for verification

• Interfaces become very important

– Between functions

– Between groups
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Interfaces

• Interfaces must be owned

• As partitioning continues new interfaces 

are created
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Maintaining the models

S1

P1

P2S2
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Hardware / Software

• Three modeling options

– Model HW and SW in a single model
• Virtual System Prototype

• Usually used for SW verification

– Filter / Translate HW/SW communications
• Separates modeling concerns

• Must be careful about implicit effects of interfaces

– Model SW running on the HW
• Traditional HW/SW co-verification

• Possible performance issues
Migration

Path
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Interface Models

• Interface models are key to system model 
migration

– Wire / Event level

– Method / Transaction level

– Need smooth migration between them

• Must be able to:
– Evaluate system models with abstract interfaces

– Evaluate interface implementation with system models

– Evaluate implementation models with abstract 
interfaces
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Model and Interface 

Refinement
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Interface ‘languages’

• OSCI – TLM

– Defined interface views. Good start but not 
sufficient

• GreenSoCs – GreenBus

– Separates interface protocol from transport

– Concepts to be moved into OSCI

• Spiratech (Mentor) CY language

– Declarative interface specification language

– Supports abstraction migration
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Analysis Possibilities

• Functional

• Performance

• Interface

• Power

• Area

• Cost

• Debuggability



Verification
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When Does Verification Begin?

• Verification starts as soon as a project is 

conceived

– In early stages it is ad-hoc

– Based on experimentation

• After partitioning verification becomes 

more formalized

– Structure becomes more stable

• Major decisions fixed

• Enables verification plan creation
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Facets of Verification

Implementation 
Verification 

Complete System 
Verification 

System Design 

Partitioning 

Software Design Hardware Design 

Software Develop Hardware Impl. 

Integration 

Physical Design 

Behavioral 
Verification 

Performance 
Verification 

Functional 
Verification 

IP IP C,  C++ 
SystemC 

SystemVerilog 

VHDL, Verilog 

UML, 
Matlab 
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Verification Fundamentals

• Verification is the comparison of two 
independently obtained models
– Formal verification is exhaustive and analytical

• Need a partial model of the environment (constraints)

– Simulation is a sampling approach
• Random generation also requires a model of the environment 
(interaction model)

• A set of directed tests is also a model

• An abstract model synthesized into an 
implementation cannot serve as a reference 
model
– This would only verify the synthesis tool, not the 
function

– This is equivalence checking
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Positive and Negative 

Verification

• Negative Verification
– Show the non-existence of bugs

• Predominates today

• Shows a block will function under all conditions

• With simulation we cannot achieve 100% negative verification

– Property checking not ready yet

• There are many horror stories about bugs found late in the cycle

• Tends to imply all bugs created equal

• Positive Verification
– Show that the design actually does something useful

• Prioritizes important functionality over others

• More predictable schedules

• BUT – changes may have catastrophic consequences

• Need to balance positive and negative verification
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Verification Plan

• A verification plan is used to:

– Formulate a strategy

– Develop tactics

• The verification plan must answer two 

questions: 

1. What is the scope of the verification 

problem?

2. What is the solution to the verification 

problem?
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Verification Plan Outline

1. Introduction ........................................ what does this document contain?

2. Functional Requirements ................... opaque box design behaviors
– 2.1 Functional Interfaces ........................ external interface behaviors

– 2.2 Core Features ................................. external design-indep behaviors

3. Design Requirements ........................ clear box design behaviors
– 3.1 Design Interfaces ............................ internal interface behaviors

– 3.2 Design Cores .................................. internal block requirements

4. Verification Views .............................. time-based or functional features

5. Verification Environment Design ....... functional spec of the verification env
– 5.1 Coverage ....................................... coverage aspect functional spec

– 5.2 Checkers ........................................ checking aspect functional spec

– 5.3 Stimuli ............................................ stimulus aspect functional spec

– 5.4 Monitors ......................................... data monitors functional spec
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Specification Analysis

• Identify the feature set of the design and 
its corner cases

– A corner case is one or more data values or 
sequential events that, in combination, lead to 
a substantial change in design behavior

• Can be done two ways

– Bottom up
• Suitable for small specifications 

– Top down
• Preferred for most design specifications
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Top-Down Analysis 

Contributors

WW27 WW47WW43WW39WW35WW31WW27 WW47WW43WW39WW35WW31

LAN Ingress

LAN Egress

LAN Ingress

LAN Egress

JPEG

MPEG Encoder

Verification Plan

Software
Engineer

Project
Verification
Manager

Verification 
Engineer

Systems
Engineer

Hardware 
Designer

How do I 
capture 
system 

behaviors

What bugs 
are in the 

logic I build?

Does HW 
support all 

SW 
functions? 

Are system 
performance 
and features 
as expected?

Will we get it 
all done in 
time?
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A Coverage Model is the Result

• A coverage model is an abstract 

representation of device behavior

composed of attributes and their 

relationships. The relationships may be 

either data or temporal in nature.
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Coverage Model Structures

• Matrix

0          S          M          L         M

m          e          a          a

a           d           r          x

l            I          g

l           u          e

m

Length

Odd

Parity
Even

3

2

1         Address
0

• Hierarchical

• Hybrid with hierarchical parent

• Hybrid with matrix parent
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Coverage Model Detailed 

Design

• For each attribute, answer the questions:

– What must be sampled for each attribute value?

– Where in the verification environment or DUV should 

the value be sampled?

– When should the data be sampled and correlated?
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Verification Environment 

Components

• Coverage Models

• Dynamic Verification
– Stimulus generator

– Response checking

• Static Verification
– Limited to implementation verification

– Constraints

• Execution Management

• Result Analysis
– Failure analysis

– Coverage analysis
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Post Silicon Debug

• The likelihood that your design will work 
first time ?

– Small today

– Getting smaller

• Must plan for silicon debug

– Raise visibility within the chip

– Add controllability

– Potentially add modifiability

• Lots of progress in this area
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The Prescription

• Capture all design intent in specifications

– Executable and natural language

• Perform rigorous verification planning

– Quantify the scope of the problem

– Specify the solution to the problem

• Modulate coverage model fidelity

• Use the plan to drive the verification 

process



HW and SW Implementation
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Hardware Implementation

• A range of implementation architectures are 
possible:
– General-purpose fixed ISA CPU

– Configurable and extensible processor tailored for the 
application

– DSP (which may be based on an extensible 
processor)

– VLIW processor (which may be based on an 
extensible processor)

– FPGA (which may incorporate one or more 
processors)

– ASIC/ASSP hardware blocks
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Comparison
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Processor Alternatives

• Configurable and Extensible

• DSP

• VLIW

• Application Specific Coprocessors

– Note:  The first category may subsume all the 

rest, depending on the technology offered
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External Bus

Interface

Base ISA Feature

Configurable Functions

Optional Function

Designer Defined Features (TIE)

Optional & Configurable

User Defined 

Queues / Ports 

up to 1M Pins
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Local Memory 

Interface
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Execution 
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Instruction Fetch / Decode 

Data 

Load/Store 

Unit

Register File 

User Defined 

Execution Unit

Vectra LX

DSP Engine

Processor Controls

Interrupts, 

Breakpoints, Timers

Load/Store Unit #2

Local

Instruction

Memories

Processor 

Interface (PIF) 

to System Bus 

Local Data
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. . . . .

U
s
e
r D
e
fin
e
d
 E
x
e
c
u
tio
n
 U
n
its
, 

R
e
g
is
te
r F
ile
s
 a
n
d
 In
te
rfa
c
e
s

. . .

Designer-defined  FLIX 
parallel execution 
pipelines - “N” wide

Base ISA 
Execution 
Pipeline

Example of configurable 

extensible processor
Configuration

Instruction Set

Extension
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ESL Synthesis Design Flow



3/16/2007
Copyright © Brian Bailey, Grant Martin 

and Andrew Piziali 2007
108

High-level/Behavioral 

synthesis: past

• Used different code than RTL synthesis although 

usually used Verilog or VHDL as inputs

– Multicycle

– Loops

– Memory access via arrays

• But fell short due to:

– Input language – HDLs not natural for algorithms

– Timing convergence issues

– Verification of RTL implementation
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ESL Synthesis:  present

• Overcomes limitations of past behavioral 

or high-level synthesis:

– More natural input languages

• C or a C-related language (C++, SystemC, special 

C dialects)

• Support for:

– Structure

– Concurrency

– Data types (e.g. bit-wise, fixed-point)

– Operation overloading to support polymorphic typing
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ESL Synthesis:  Other 

requirements

• Natural input/output declarations
– Types or pragmas

• Verification compatibility
– E.g. using SystemC TLM models together with RTL-
level adaptors

• Control over quality of results
– Timing convergence

– Scheduling/latency constraints

– Resource allocation

– Compatibility with RTL flow “back end”

– General constraint handling

– Design space exploration
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Not your grandfather’s 

behavioral synthesis

• New tools have emerged with more 

credible evaluation and some adoption 

results

– Forte Cynthesizer

– Mentor Catapult

– NEC Cyber
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Example code

/* Metaports and port data types */

typedef dctelem< sc_uint<8>, DCT_SIZE, DCT_SIZE > UINT8_DATA;

typedef p2p< UINT8_DATA, IF_LEVEL > UINT8_IF;

typedef dctelem< sc_int<12>, DCT_SIZE, DCT_SIZE > INT12_DATA;

typedef p2p< INT12_DATA, IF_LEVEL > INT12_IF;

/* Module Definition */

SC_MODULE(dct)

{

public:

sc_in< bool > clk;

sc_in< bool > rst;

UINT8_IF::base_in in;

INT12_IF::base_out out;

SC_CTOR(dct) : clk( "clk" ), rst( "rst" ), in( "in" ), out( "out" ) {

SC_CTHREAD( thread0, clk.pos() );

watching( rst.delayed() == 0 );

}

private:

void thread0();

void dct_2d( sc_int<16> data[DCT_SIZE][DCT_SIZE] );

};
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Example Code

void dct::thread0()

{

UINT8_DATA in_data;

INT12_DATA out_data;

sc_int<16> buf[DCT_SIZE][DCT_SIZE];

{

CYN_PROTOCOL( "reset" );

in.reset();

out.reset();

wait();

}

while( true ) {

for( int r = 0; r < DCT_SIZE; r++ ) {

in_data = in.get();

for( int c = 0; c < DCT_SIZE; c++ )

buf[r][c] = in_data[c];

}

dct_2d( buf );

for( int r = 0; r < DCT_SIZE; r++ ) {

for( int c = 0; c < DCT_SIZE; c++ )

out_data.d[c] = buf[r][c];

out.put( out_data );

}

}

}
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Example code – output ports

template <class T, typename L>

class p2p_base_out

{

public:

p2p_base_out(

const char* name=sc_gen_unique_name("p2p_out") )

: busy("busy")

, vld( "vld")

, data( "data")

{}

// Interface ports

sc_in<bool> busy;

sc_out<bool> vld;

sc_out<T> data;

// Binding functions

template <class C>

void bind( C& c ) {

busy(c.busy);

vld(c.vld);

data(c.data);

}

….
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Constraints as pragmas

void dct::dct_1d( sc_int<16> data[DCT_SIZE] ) {

CYN_DPOPT("dct_1d");

…

}

void dct::dct_2d( sc_int<16> buf[DCT_SIZE][DCT_SIZE] ) {

…

}

void dct::thread0()

{

…

while( true ) {

CYN_INITIATE(8, "dct_pipe");

for( int r = 0; r < DCT_SIZE; r++ ) {

in_data = in.get();

for( int c = 0; c < DCT_SIZE; c++ )

buf[r][c] = in_data[c];

}

dct_2d( buf );

for( int r = 0; r < DCT_SIZE; r++ ) {

for( int c = 0; c < DCT_SIZE; c++ )

out_data.d[c] = buf[r][c];

out.put( out_data );

}

}

}
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Design Space Exploration
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The Prescription

• Variety of implementation alternatives if function must be 
implemented in tuned hardware:
– Reuse of IP blocks

– Configuring RTL

– Configurable extensible processor

– Generating function-specific coprocessor

– High-level or ESL synthesis

• This generation of ESL synthesis is real.

• ESL Synthesis uses C/C++/SystemC or other C dialects as input

• Verification environments that work between ESL and RTL levels 
have made progress

• Several commercial tools exist

• ESL Synthesis is thus a viable option for hardware implementation
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Software Implementation

• Classical SW development methods

• Developing run-time software from ESL 

tools

• Developing software using ESL models as 

run-time environments (Virtual System 

Prototypes)
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Classical SW development

• Performance Estimation

– Historically, estimates often used processor 

“MIPS” ratings

– But MIPS1 ≠ MIPS2

�Mandates use of ISSs

– But standalone ISSs don’t reflect the system 

environment, especially memory

�Mandates use of Virtual System Prototypes
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Classical Development Tools

• C is still dominant for embedded systems, 

with some C++, C# and Java

• Standard IDEs from various vendors

• Emulation, ICE, evolving to on-chip 

embedded processor trace
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Developing run-time software 

from ESL tools

• Algorithmic, e.g.

– MATLAB code generation to production code

• Some companies (Accelchip, now part of Xilinx, 

was one)

• Catalytic was offering this, but now focusing more 

on fast (C based) MATLAB modeling

• Many issues of generating efficient executable 

code from actor libraries e.g. MATLAB, Simulink
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Developing run-time software 

from Models

• Control code viz. UML or SDL
– Some success with this over the years

– SDL has been used to generate real executable code as part of 
telecom protocol stacks

– Code generation from UML is improving especially as recent 
versions, e.g. UML 2.0, have allowed better modeling and 
annotation of constraints to be incorporated

– Continues to be a “Holy Grail” for the UML tools companies

– Issues of code quality (especially optimizing across levels of the 
“stack”) and debugging continue to be issues

– UML tools have become integrated with IDEs over time



3/16/2007
Copyright © Brian Bailey, Grant Martin 

and Andrew Piziali 2007
123

Developing software using 

ESL models

• Models are run-time environments (Virtual System 
Prototypes)

• This is the area that is “hottest” as a pragmatic capability

• Commercial tools available from several vendors:
– CoWare, VaST, Synopsys (Virtio), ARM (Axys)

– Need support from IP model vendors
• ARM, Tensilica, Ceva, others

• As much value lies in the standard bus libraries for AMBA AHB, 
AXI, OCP-IP as in the environment

• Analysis capabilities useful to some

– Often use both cycle-accurate, TLM and Fast functional models 
for processors

• Debug/observability/integration with IDEs important

• Likely to see rapid development in this area
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Example
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The Prescription

• The two key ESL capabilities important for 

SW today:

– Code generation from Models

• Keep watching the skies!

• Progress is being made

– Virtual System Prototype Models

• A reality today

• Acquire and use!



Summary, Futures and 

Conclusions
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Summary

We’ve talked 
about 
elements 
of an ESL 
“Flow”

Software 

Implementation

Hardware 

Implementation

Specification and Modeling

Post-Partitioning Verification

Post-Partitioning Analysis

Pre-Partitioning Analysis

Partitioning

Implementation Verification
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Summary

• Pieces of this ESL “flow” are at different stages of evolution

• Specification
– Lots of languages to choose from

– Practices not yet standardized

– SystemC likely to become standard modeling glue

• Pre-Partitioning analysis
– Static methods have history, few users

– Dynamic (simulation) methods have history and lots of users, especially 
in dataflow/algorithmic space

– Beware of implementation artifacts confusing early analysis

• Partitioning
– Still more of a manual process, supported by various models and 

simulation

– Output of hardened partitions may be a Virtual System Prototype (VSP)

– Commercial modeling tools beginning to become credible

– SystemC/OSCI playing a growing role with commercial tools
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Summary

• Post-Partitioning analysis
– May feedback into partitioning process

– Availability of modeling/simulation environments and IP models important to back 
this up

• Post-Partitioning verification
– Interacts with other kinds of modeling and analysis environments

– Important step in building reusable verification plans that can migrate to 
implementation step

• HW implementation
– Many different implementation options – configurable processors, coprocessor 

synthesis, high-level synthesis

– Emerging ESL synthesis is “not your grandparent’s”

– Growing and credible use of ESL synthesis for blocks that must be HW

• SW implementation
– But HW takes the back seat to SW – SW everywhere we can; HW only where we 

must

– SW implementation from ESL models (UML, SDL, etc.) still rare

– SW verification on ESL models (VSPs) is growing

• Implementation Verification
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Futures

• Research

• Globalization

• Value Migration

• Education

• Commercial EDA
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Research

• Metropolis

• SPACE

• Multi-processors

• Emerging architectures

– Homogeneous systems

– Heterogeneous systems

– ROSES
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Globalization

• More people able to participate in the high-tech economy

• More people can contribute

• More people can consume
– Products may need wider range of derivatives across wider 

global markets

• We have been here before
– Railroads

– Replacement of wind by steam at sea

– Communications and air travel

• Needs:
– IP policy harmonization to reasonable set of common accepted 

practices

– Using standards to promote market development, not engage in 
short-term protectionism
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Value Migration

• Past:  focus on EDA tools

• Emergence of IP industry

– Star vs Less-than-stellar

– IP value hard to maintain:  migration to 

platforms

• Cost of verification

– Can verification IP attract and maintain value?
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Education

• What do future designers need to know?

• If they need to understand ESL

– What do they stop learning?

– How do they cross the HW-SW (Electrical 

Engineering- Computer Science) divide?

– How do we move people from the details of 

detail to the details of systems?
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Commercial EDA

• Decline of ASIC/ASSP starts

• Rise of FPGA starts

• Decline of ASPs as products became commoditized

• FPGA pressures to lower ASPs

• Challenges of back end

• Complexity of front end

• IP industry – tools are an enabler, not a business in itself

• NOT the responsibility of designers to guarantee a viable 
ESL market for EDA tool companies
– But if tools provide value, a viable market will emerge

– Remember open source and standards!   Constrains revenue of 
proprietary solutions
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Conclusions

• ESL has made some significant progress in the 
last few years

• After fits and starts since at least the mid 1990s, 
we can see an ESL flow begin to take shape

• But a flow is more than just commercial tools

• Significant work is being done with research 
tools, models and open source modeling 
environments

• We urge everyone to
– Educate themselves on ESL

– Adopt what is usable now

– Monitor new developments and adopt when ready



Thank You. Questions?
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