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CONVENTIONAL RLS ADAPTIVE FILTER

5.1 INTRODUCTION

Least-squares algorithms aim at the minimization of the sum of the squares of the difference between
the desired signal and the model filter output [1]-[2]. When new samples of the incoming signals are
received at every iteration, the solution for the least-squares problem can be computed in recursive
form resulting in the recursive least-squares (RLS) algorithms. The conventional version of these
algorithms will be the topic of the present chapter.

The RLS algorithms are known to pursue fast convergence even when the eigenvalue spread of the
input signal correlation matrix is large. These algorithms have excellent performance when working
in time-varying environments. All these advantages come with the cost of an increased computational
complexity and some stability problems, which are not as critical in LMS-based algorithms [3]-[4].

Several properties related to the RLS algorithms are discussed including misadjustment, tracking
behavior, which are verified through a number of simulation results.

Appendix C deals with the quantization effects in the conventional RLS algorithm. Appendix D
provides an introduction to Kalman filters whose special case can be related to the RLS algorithms.

5.2 THE RECURSIVE LEAST-SQUARES ALGORITHM

The objective here is to choose the coefficients of the adaptive filter such that the output signal y(k),
during the period of observation, will match the desired signal as closely as possible in the least-
squares sense. The minimization process requires the information of the input signal available so
far. Also, the objective function we seek to minimize is deterministic.

The generic FIR adaptive filter realized in the direct form is shown in Fig. 5.1. The input signal
information vector at a given instant k is given by

x(k) = [x(k) x(k − 1) . . . x(k −N)]T (5.1)
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Figure 5.1 Adaptive FIR filter.

whereN is the order of the filter. The coefficients wj(k), for j = 0, 1, . . . , N , are adapted aiming at
the minimization of a given objective function. In the case of least-squares algorithms, the objective
function is deterministic and is given by

ξd(k) =
k∑
i=0

λk−iε2(i)

=
k∑
i=0

λk−i [d(i)− xT (i)w(k)
]2

(5.2)
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where w(k) = [wo(k) w1(k) . . . wN (k)]T is the adaptive-filter coefficient vector and ε(i) is the a
posteriori output error1 at instant i. The parameter λ is an exponential weighting factor that should be
chosen in the range 0� λ ≤ 1. This parameter is also called forgetting factor since the information
of the distant past has an increasingly negligible effect on the coefficient updating.

It should be noticed that in the development of the LMS and LMS-based algorithms we utilized the a
priori error. In the RLS algorithms ε(k) is used to denote the a posteriori error whereas e(k) denotes
the a priori error. The a posteriori error will be our first choice in the development of the RLS-based
algorithms.

As can be noted, each error consists of the difference between the desired signal and the filter output,
using the most recent coefficients w(k). By differentiating ξd(k) with respect to w(k), it follows that

∂ξd(k)
∂w(k)

= −2
k∑
i=0

λk−ix(i)[d(i)− xT (i)w(k)] (5.3)

By equating the result to zero, it is possible to find the optimal vector w(k) that minimizes the
least-squares error, through the following relation:

−
k∑
i=0

λk−ix(i)xT (i)w(k) +
k∑
i=0

λk−ix(i)d(i) =

⎡
⎢⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎥⎦

The resulting expression for the optimal coefficient vector w(k) is given by

w(k) =

[
k∑
i=0

λk−ix(i)xT (i)

]−1 k∑
i=0

λk−ix(i)d(i)

= R−1
D (k)pD(k) (5.4)

where RD(k) and pD(k) are called the deterministic correlation matrix of the input signal and the
deterministic cross-correlation vector between the input and desired signals, respectively.

In equation (5.4) it was assumed that RD(k) is nonsingular. However, if RD(k) is singular a
generalized inverse [1] should be used instead in order to obtain a solution for w(k) that minimizes
ξd(k). Since we are assuming that in most practical applications the input signal has persistence of
excitation, the cases requiring generalized inverse are not discussed here. It should be mentioned
that if the input signal is considered to be zero for k < 0 then RD(k) will always be singular for
k < N , i.e., during the initialization period. During this period, the optimal value of the coefficients
can be calculated for example by the backsubstitution algorithm to be presented in subsection 9.2.1.

The straightforward computation of the inverse of RD(k) results in an algorithm with computational
complexity of O[N3]. In the conventional RLS algorithm the computation of the inverse matrix is

1The a posteriori error is computed after the coefficient vector is updated, and taking into consideration the most recent
input data vector x(k).
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avoided through the use of the matrix inversion lemma [1], first presented in the previous chapter for
the LMS-Newton algorithm. Using the matrix inversion lemma, see equation (4.51), the inverse of
the deterministic correlation matrix can then be calculated in the following form

SD(k) = R−1
D (k) =

1
λ

[
SD(k − 1)− SD(k − 1)x(k)xT (k)SD(k − 1)

λ+ xT (k)SD(k − 1)x(k)

]
(5.5)

The complete conventional RLS algorithm is described in Algorithm 5.1.

Algorithm 5.1

Conventional RLS Algorithm

Initialization
SD(−1) = δI

where δ can be the inverse of the input signal power estimate
pD(−1) = x(−1) = [0 0 . . . 0]T

Do for k ≥ 0 :
SD(k) = 1

λ [SD(k − 1)− SD(k−1)x(k)xT (k)SD(k−1)
λ+xT (k)SD(k−1)x(k)

]
pD(k) = λpD(k − 1) + d(k)x(k)
w(k) = SD(k)pD(k)

If necessary compute
y(k) = wT (k)x(k)
ε(k) = d(k)− y(k)

An alternative way to describe the conventional RLS algorithm can be obtained if equation (5.4) is
rewritten in the following form[

k∑
i=0

λk−ix(i)xT (i)

]
w(k) = λ

[
k−1∑
i=0

λk−i−1x(i)d(i)

]
+ x(k)d(k) (5.6)

By considering that RD(k − 1)w(k − 1) = pD(k − 1), it follows that[
k∑
i=0

λk−ix(i)xT (i)

]
w(k) = λpD(k − 1) + x(k)d(k)

= λRD(k − 1)w(k − 1) + x(k)d(k)

=

[
k∑
i=0

λk−ix(i)xT (i)− x(k)xT (k)

]
w(k − 1) + x(k)d(k)

(5.7)
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where in the last equality the matrix x(k)xT (k) was added and subtracted inside square bracket on
the right side of equation (5.7). Now, define the a priori error as

e(k) = d(k)− xT (k)w(k − 1) (5.8)

By expressing d(k) as a function of the a priori error and replacing the result in equation (5.7), after
few manipulations, it can be shown that

w(k) = w(k − 1) + e(k)SD(k)x(k) (5.9)

With equation (5.9), it is straightforward to generate an alternative conventional RLS algorithm as
shown in Algorithm 5.2.

Algorithm 5.2

Alternative RLS Algorithm

Initialization
SD(−1) = δI

where δ can be the inverse of an estimate of the input signal power
x(−1) = w(−1) = [0 0 . . . 0]T

Do for k ≥ 0
e(k) = d(k)− xT (k)w(k − 1)
ψ(k) = SD(k − 1)x(k)

SD(k) = 1
λ [SD(k − 1)− ψ(k)ψT

(k)

λ+ψT
(k)x(k)

]

w(k) = w(k − 1) + e(k)SD(k)x(k)
If necessary compute
y(k) = wT (k)x(k)
ε(k) = d(k)− y(k)

In Algorithm 5.2, ψ(k) is an auxiliary vector required to reduce the computational burden defined
by

ψ(k) = SD(k − 1)x(k) (5.10)

Further reduction in the number of divisions is possible if an additional auxiliary vector is used,
defined as

φ(k) =
ψ(k)

λ+ψT (k)x(k)
(5.11)

This vector can be used to update SD(k) as follows:

SD(k) =
1
λ

[
SD(k − 1)−ψ(k)φT (k)

]
(5.12)

As will be discussed, the above relation can lead to stability problems in the RLS algorithm.
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5.3 PROPERTIES OF THE LEAST-SQUARES SOLUTION

In this section, some properties related to the least-squares solution are discussed in order to give
some insight to the algorithm behavior in several situations to be discussed later on.

5.3.1 Orthogonality Principle

Define the matrices X(k) and d(k) that contain all the information about the input signal vector x(k)
and the desired signal vector d(k) as follows:

X(k) =

⎡
⎢⎢⎢⎣

x(k) λ1/2x(k − 1) · · · λ(k−1)/2x(1) λk/2x(0)
x(k − 1) λ1/2x(k − 2) · · · λ(k−1)/2x(0) 0

...
...

...
...

x(k −N) λ1/2x(k −N − 1) · · · 0 0

⎤
⎥⎥⎥⎦

= [x(k) λ1/2x(k − 1) . . . λk/2x(0)] (5.13)

d(k) = [d(k) λ1/2d(k − 1) . . . λk/2d(0)]T (5.14)

where X(k) is (N + 1)× (k + 1) and d(k) is (k + 1)× 1.

By using the matrices above defined it is possible to replace the least-squares solution of equation
(5.4) by the following relation

X(k)XT (k)w(k) = X(k)d(k) (5.15)

The product XT (k)w(k) forms a vector including all the adaptive-filter outputs when the coefficients
are given by w(k). This vector corresponds to an estimate of d(k). Hence, defining

y(k) = XT (k)w(k) = [y(k) λ1/2y(k − 1) . . . λk/2y(0)]T (5.16)

it follows from equation (5.15) that

X(k)XT (k)w(k)− X(k)d(k) = X(k)[y(k)− d(k)] = 0 (5.17)

This relation means that the weighted-error vector given by

ε(k) =

⎡
⎢⎢⎢⎣

ε(k)
λ1/2ε(k − 1)

...
λk/2ε(0)

⎤
⎥⎥⎥⎦ = d(k)− y(k) (5.18)

is in the null space of X(k), i.e., the weighted-error vector is orthogonal to all row vectors of X(k).
This justifies the fact that (5.15) is often called normal equation. A geometrical interpretation can
easily be given for a least-squares problem solution with a single coefficient filter.
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Example 5.1

Suppose that λ = 1 and that the following signals are involved in the least-squares problem

d(1) =
[

0.5
1.5

]
X(1) = [1 − 2]

The optimal coefficient is given by

X(1)XT (1)w(1) = [1 − 2]
[

1
−2

]
w(1)

= X(1)d(1)

= [1 − 2]
[

0.5
1.5

]
After performing the calculations the result is

w(1) = −1
2

The output of the adaptive filter with coefficient given by w(1) is

y(1) =
[ − 1

2
1

]
Note that

X(1)[y(1)− d(1)] = [1 − 2]
[ −1
−0.5

]
= 0

Fig. 5.2 illustrates the fact that y(1) is the projection of d(1) in the X(1) direction. In the general
case we can say that the vector y(k) is the projection of d(k) onto the subspace spanned by the rows
of X(k).

�

5.3.2 Relation Between Least-Squares and Wiener Solutions

When λ = 1 the matrix 1
k+1RD(k) for large k is a consistent estimate of the input signal autocorrela-

tion matrix R, if the process from which the input signal was taken is ergodic. The same observation
is valid for the vector 1

k+1pD(k) related to p if the desired signal is also ergodic. In this case,

R = lim
k→∞

1
k + 1

k∑
i=0

x(i)xT (i) = lim
k→∞

1
k + 1

RD(k) (5.19)
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ε

Figure 5.2 Geometric interpretation of least-squares solution.

and

p = lim
k→∞

1
k + 1

k∑
i=0

x(i)d(i) = lim
k→∞

1
k + 1

pD(k) (5.20)

It can then be shown that
w(k) = R−1

D (k)pD(k) = R−1p = wo (5.21)

when k tends to infinity. This result indicates that the least-squares solution tends to the Wiener
solution if the signals involved are ergodic and stationary. The stationarity requirement is due to the
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fact that the estimate of R given by equation (5.19) is not sensitive to any changes in R for large
values of k. If the input signal is nonstationary RD(k) is a biased estimate for R. Note that in this
case R is time varying.

5.3.3 Influence of the Deterministic Autocorrelation Initialization

The initialization of SD(−1) = δI causes a bias in the coefficients estimated by the adaptive filter.
Suppose that the initial value given to RD(k) is taken into account in the actual RLS solution as
follows:

k∑
i=−1

λk−ix(i)xT (i)w(k) = [
k∑
i=0

λk−ix(i)xT (i) +
λk+1

δ
I]w(k)

= pD(k) (5.22)

By recognizing that the deterministic autocorrelation matrix leading to an unbiased solution does
not include the initialization matrix, we now examine the influence of this matrix. By multiplying
SD(k) = R−1

D (k) on both sides of equation (5.22), and by considering k →∞, it can be concluded
that

w(k) +
λk+1

δ
SD(k)w(k) = wo (5.23)

where wo is the optimal solution for the RLS algorithm.

The bias caused by the initialization of SD(k) is approximately

w(k)− wo ≈ −λ
k+1

δ
SD(k)wo (5.24)

For λ < 1, it is straightforward to conclude that the bias tends to zero as k tends to infinity. On the
other hand, when λ = 1 the elements of SD(k) get smaller when the number of iterations increase,
as a consequence this matrix approaches a null matrix for large k.

The RLS algorithm would reach the optimum solution for the coefficients after N + 1 iterations if
no measurement noise is present, and the influence of the initialization matrix SD(−1) is negligible
at this point. This result follows from the fact that after N + 1 iterations, the input signal vector
has enough information to allow the adaptive algorithm to identify the coefficients of the unknown
system. In other words, enough information means the tap delay line is filled with information of
the input signal.

5.3.4 Steady-State Behavior of the Coefficient Vector

In order to understand better the steady-state behavior of the adaptive-filter coefficients, suppose that
an FIR filter with coefficients given by wo is being identified by an adaptive FIR filter of the same
order employing an LS algorithm. Also assume that a measurement noise signal n(k) is added to
the desired signal before the error signal is calculated as follows:

d(k) = wTo x(k) + n(k) (5.25)
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where the additional noise is considered to be a white noise with zero mean and variance given by
σ2
n.

Given the adaptive-filter input vectors x(k), for k = 0, 1, . . ., we are interested in calculating the
average values of the adaptive-filter coefficients wi(k), for i = 0, 1, . . . , N . The desired result is the
following equality valid for k ≥ N .

E[w(k)] = E
{[

X(k)XT (k)
]−1

X(k)d(k)
}

= E
{[

X(k)XT (k)
]−1

X(k)[XT (k)wo + n(k)]
}

= E
{[

X(k)XT (k)
]−1

X(k)XT (k)wo
}

= wo (5.26)

where n(k) = [n(k) λ1/2n(k − 1) λn(k − 2) . . . λk/2n(0)]T is the noise vector, whose elements
were considered orthogonal to the input signal. The above equation shows that the estimate given
by the LS algorithm is an unbiased estimate when λ ≤ 1.

A more accurate analysis reveals the behavior of the adaptive-filter coefficients during the transient
period. The error in the filter coefficients can be described by the following (N + 1)× 1 vector

Δw(k) = w(k)− wo (5.27)

It follows from equation (5.7) that

RD(k)w(k) = λRD(k − 1)w(k − 1) + x(k)d(k) (5.28)

Defining the minimum output error as

eo(k) = d(k)− xT (k)wo (5.29)

and replacing d(k) in equation (5.28), it can be deduced that

RD(k)Δw(k) = λRD(k − 1)Δw(k − 1) + x(k)eo(k) (5.30)

where the following relation was used

RD(k) = λRD(k − 1) + x(k)xT (k) (5.31)

The solution of equation (5.30) is given by

Δw(k) = λk+1SD(k)RD(−1)Δw(−1) + SD(k)
k∑
i=0

λk−ix(i)eo(i) (5.32)

By replacing RD(−1) by 1
δ I and taking the expected value of the resulting equation, it follows that

E[Δw(k)] =
λk+1

δ
E[SD(k)]Δw(−1) + E[SD(k)

k∑
i=0

λk−ix(i)eo(i)] (5.33)
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Since SD(k) is dependent on all past input signal vectors, becoming relatively invariant when the
number of iterations increase, the contribution of any individual x(i) can be considered negligible.
Also, due to the orthogonality principle, eo(i) can also be considered uncorrelated to all elements of
x(i). This means that the last vector in equation (5.33) cannot have large element values. On the
other hand, the first vector in equation (5.33) can have large element values only during the initial
convergence, since as k → ∞, λk+1 → 0 and SD(k) is expected to have a nonincreasing behavior,
i.e., RD(k) is assumed to remain positive definite as k → ∞ and the input signal power does not
become too small. The above discussion leads to the conclusion that the adaptive-filter coefficients
tend to the optimal values in wo almost independently from the eigenvalue spread of the input signal
correlation matrix.

If we consider the spectral decomposition of the matrix E[SD(k)] (see equation (2.65)), the depen-
dency on the eigenvalues of R can be easily accounted for in the simple case of λ = 1. Applying the
expected value operator to the relation of equation (5.19), we can infer that

E[SD(k)] ≈ R−1

(k + 1)
(5.34)

for large k. Now consider the slowest decaying mode of the spectral decomposition of E[SD(k)]
given by

SDmax =
qminqTmin

(k + 1)λmin
(5.35)

where λmin is the smallest eigenvalue of R and qmin is the corresponding eigenvector. Applying this
result to equation (5.33), with λ = 1, we can conclude that the value of the minimum eigenvalue
affects the convergence of the filter coefficients only in the first few iterations, because the term k+1
in the denominator reduces the values of the elements of SDmax .

Further interesting properties of the coefficients generated by the LS algorithm are:

The estimated coefficients are the best linear unbiased solution to the identification problem
[1], in the sense that no other unbiased solution generated by alternative approaches has lower
variance.

If the additive noise is normally distributed the LS solution reaches the Cramer-Rao lower
bound, resulting in a minimum-variance unbiased solution [1]. The Cramer-Rao lower bound
establishes a lower bound to the coefficient-error-vector covariance matrix for any unbiased
estimator of the optimal parameter vector wo.

5.3.5 Coefficient-Error-Vector Covariance Matrix

So far, we have shown that the estimation parameters in the vector w(k) converge on average to
their optimal value of the vector wo. However, it is essential to analyze the coefficient-error-vector
covariance matrix in order to determine how good is the obtained solution, in the sense that we are
measuring how far the parameters wander around the optimal solution.
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Using the same convergence assumption of the last section, it will be shown here that for λ = 1 the
coefficient-error-vector covariance matrix is given by

cov[Δw(k)] = E
[
(w(k)− wo)(w(k)− wo)T

]
= σ2

nE[SD(k)] (5.36)

Proof:

First note that by using equations (5.4) and (5.15), the following relations are verified

w(k)− wo = SD(k)pD(k)− SD(k)S−1
D (k)wo (5.37)

=
[
X(k)XT (k)

]−1
X(k)

[
d(k)− XT (k)wo

]
(5.38)

=
[
X(k)XT (k)

]−1
X(k)n(k) (5.39)

where n(k) = [n(k) λ1/2n(k − 1) λn(k − 2) . . . λk/2n(0)]T .

Applying the last equation to the covariance of the coefficient-error-vector it follows that

cov[Δw(k)] = E
{[

X(k)XT (k)
]−1

X(k)E[n(k)nT (k)]XT (k)
[
X(k)XT (k)

]−1
}

= E
{
σ2
nSD(k)X(k)ΛXT (k)SD(k)

}
where

Λ =

⎡
⎢⎢⎢⎢⎢⎣

1
λ 0

λ2

0
. . .

λk

⎤
⎥⎥⎥⎥⎥⎦

For λ = 1, Λ = I, it follows that

cov[Δw(k)] = E
[
σ2
nSD(k)X(k)XT (k)SD(k)

]
= E

[
σ2
nSD(k)RD(k)SD(k)

]
= σ2

nE [SD(k)]

�

Therefore, when λ = 1, the coefficient-error-vector covariance matrix tends to decrease its norm
as time progresses since SD(k) is also norm decreasing. The variance of the additional noise n(k)
influences directly the norm of the covariance matrix.
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5.3.6 Behavior of the Error Signal

It is important to understand how the error signal behaves in the RLS algorithm. When a measurement
noise is present in the adaptive-filtering process, the a priori error signal is given by

e(k) = d′(k)− wT (k − 1)x(k) + n(k) (5.40)

where d′(k) = wTo x(k) is the desired signal without measurement noise.

Again if the input signal is considered known (conditional expectation), then

E[e(k)] = E[d′(k)]− E[wT (k − 1)]x(k) + E[n(k)]
= E[wTo − wTo ]x(k) + E[n(k)]
= E[n(k)] (5.41)

assuming that the adaptive-filter order is sufficient to model perfectly the desired signal.

From equation (5.41), it can be concluded that if the noise signal has zero mean then

E[e(k)] = 0

It is also important to assess the minimum mean value of the squared error that is reachable using
an RLS algorithm. The minimum mean-square error (MSE) in the presence of external uncorrelated
noise is given by

ξmin = E[e2(k)] = E[e2o(k)] = E[n2(k)] = σ2
n (5.42)

where it is assumed that the adaptive-filter multiplier coefficients were frozen at their optimum values
and that the number of coefficients of the adaptive filter is sufficient to model the desired signal. In
the conditions described the a priori error corresponds to the minimum output error as defined in
equation (5.29). It should be noted, however, that if the additive noise is correlated with the input and
the desired signals, a more complicated expression for the MSE results, accounting for the referred
correlation.

When employing the a posteriori error the value of minimum MSE, denoted by ξmin,p, differs from
the corresponding value related to the a priori error. First note that by using equation (5.39), the
following relation is verified

Δw(k) = SD(k)X(k)n(k) (5.43)

When a measurement noise is present in the adaptive-filtering process, the a posteriori error signal
is given by

ε(k) = d′(k)− wT (k)x(k) + n(k) = −ΔwT (k)x(k) + eo(k) (5.44)

The expression for the MSE related to the a posteriori error is then given by

ξ(k) = E[ε2(k)]
= E[e2o(k)]− 2E[xT (k)Δw(k)eo(k)] + E[ΔwT (k)x(k)xT (k)Δw(k)] (5.45)
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By replacing the expression (5.43) in equation (5.45) above, the following relations follow

ξ(k)=E[e2o(k)]− 2E[xT (k)SD(k)X(k)n(k)eo(k)] + E[ΔwT (k)x(k)xT (k)Δw(k)]

=σ2
n − 2E[xT (k)SD(k)X(k)]

⎡
⎢⎢⎢⎣
σ2
n

0
...
0

⎤
⎥⎥⎥⎦+ E[ΔwT (k)x(k)xT (k)Δw(k)]

= σ2
n − 2E[xT (k)SD(k)x(k)]σ2

n + E[ΔwT (k)x(k)xT (k)Δw(k)]
= ξmin,p + E[ΔwT (k)x(k)xT (k)Δw(k)] (5.46)

where in the second equality it was considered that the additional noise is uncorrelated with the input
signal and that eo(k) = n(k). This equality occurs when the adaptive filter has sufficient order to
identify the unknown system.

Note that ξmin,p related to the a posteriori error in equation (5.46) is not the same as minimum MSE of
the a priori error, denoted in this book by ξmin. The last term, that is E[ΔwT (k)x(k)xT (k)Δw(k)],
in equation (5.46) determines the excess MSE of the RLS algorithm.

It is possible to verify that the following expressions for ξmin,p are accurate approximations

ξmin,p = {1− 2E[xT (k)SD(k)x(k)]}σ2
n

=
{
1− 2tr

[
E
(
SD(k)x(k)xT (k)

)]}
σ2
n

=
{

1− 2tr
[

1− λ
1− λk+1 I

]}
σ2
n

=
{

1− 2(N + 1)
[

1− λ
1− λk+1

]}
σ2
n

=
{

1− 2(N + 1)
[

1
1 + λ+ λ2 + · · ·+ λk

]}
σ2
n (5.47)

In the above expression, it is considered that SD(k) is slowly varying as compared to x(k) when
λ→ 1, such that

E[SD(k)x(k)xT (k)] ≈ E [SD(k)]E
[
x(k)xT (k)

]
and that by using equation (5.55)

E
[
SD(k)x(k)xT (k)

] ≈ 1− λ
1− λk+1 I

Equation (5.47) applies to the case where λ < 1, and as can be observed from the term multiplying
N + 1 there is a transient for small k which dies away when the number of iterations increases2. If
we fit the decrease in the term multiplying N + 1 at each iteration to an exponential envelop, the

2The expression for ξmin,p can be negative, however, ξ(k) is always non negative.
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time constant will be 1
λk+1 . Unlike the LMS algorithm, this time constant is time varying and is not

related to the eigenvalue spread of the input signal correlation matrix.

Example 5.2

Repeat the equalization problem of example 3.1 using the RLS algorithm.

(a) Using λ = 0.99, run the algorithm and save matrix SD(k) at iteration 500 and compare with the
inverse of the input signal correlation matrix.

(b) Plot the convergence path for the RLS algorithm on the MSE surface.

Solution:

(a) The inverse of matrix R, as computed in the example 3.1, is given by

R−1 = 0.45106
[

1.6873 0.7937
0.7937 1.6873

]
=
[

0.7611 0.3580
0.3580 0.7611

]

The initialization matrix SD(−1) is a diagonal matrix with the diagonal elements equal to 0.1. The
matrix SD(k) at the 500th iteration, obtained by averaging the results of 30 experiments, is

SD(500) =
[

0.0078 0.0037
0.0037 0.0078

]

Also, the obtained values of the deterministic cross-correlation vector is

pD(500) =
[

95.05
46.21

]

Now, we divide each element of the matrix R−1 by

1− λk+1

1− λ = 99.34

since in a stationary environment E[SD(k)] = 1−λ
1−λk+1 R−1, see equation (5.55) for a formal proof.

The resulting matrix is

1
99.34

R−1 =
[

0.0077 0.0036
0.0036 0.0077

]

As can be noted the values of the elements of the above matrix are close to the average values of the
corresponding elements of matrix SD(500).
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Similarly, if we multiply the cross-correlation vector p by 99.34, the result is

99.34p =
[

94.61
47.31

]

The values of the elements of this vector are also close to the corresponding elements of pD(500).

(b) The convergence path of the RLS algorithm on the MSE surface is depicted in Fig. 5.3. The
reader should notice that the RLS algorithm approaches the minimum using large steps when the
coefficients of the adaptive filter are far away from the optimum solution.
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Figure 5.3 Convergence path of the RLS adaptive filter.

5.3.7 Excess Mean-Square Error and Misadjustment

In a practical implementation of the recursive least-squares algorithm, the best estimation for the
unknown parameter vector is given by w(k), whose expected value is wo. However, there is always
an excess MSE at the output caused by the error in the coefficient estimation, namely Δw(k) =
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w(k)− wo. The mean-square error is (see equation (5.46))

ξ(k) = ξmin,p + E{[w(k)− wo]T x(k)xT (k)[w(k)− wo]}
= ξmin,p + E[ΔwT (k)x(k)xT (k)Δw(k)] (5.48)

Now considering that Δwj(k), for j = 0, 1, . . . , N , are random variables with zero mean and
independent of x(k), the MSE can be calculated as follows

ξ(k) = ξmin,p + E[ΔwT (k)RΔw(k)]
= ξmin,p + E{tr[RΔw(k)ΔwT (k)]}
= ξmin,p + tr{RE[Δw(k)ΔwT (k)]}
= ξmin,p + tr{Rcov[Δw(k)]} (5.49)

On a number of occasions it is interesting to consider the analysis for λ = 1 separated from that for
λ < 1.

Excess MSE for λ = 1

By applying in equation (5.49) the results of equations (5.36) and (5.19), and considering that

ξmin,p =
(

1− 2
N + 1
k + 1

)
ξmin =

(
1− 2

N + 1
k + 1

)
σ2
n

for λ = 1 (see equations (5.42) and (5.47)), we can infer that

ξ(k) =
[
1− 2

N + 1
k + 1

]
σ2
n + tr {RE[SD(k)]}σ2

n

=
[
1− 2

N + 1
k + 1

+ tr(R
R−1

k + 1
)
]
σ2
n for k →∞

=
(

1− 2
N + 1
k + 1

+
N + 1
k + 1

)
σ2
n for k →∞

=
(

1− N + 1
k + 1

)
σ2
n for k →∞

As can be noted the minimum MSE can be reached only after the algorithm has operated on a number
of samples larger than the filter order.

Excess MSE for λ < 1

Again assuming that the mean-square error surface is quadratic as considered in equation (5.48), the
expected excess in the MSE is then defined by

Δξ(k) = E[ΔwT (k)RΔw(k)] (5.50)
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The objective now is to calculate and analyze the excess MSE when λ < 1. From equation (5.30)
one can show that

Δw(k) = λSD(k)RD(k − 1)Δw(k − 1) + SD(k)x(k)eo(k) (5.51)

By applying equation (5.51) to (5.50), it follows that

E[ΔwT (k)RΔw(k)] = ρ1 + ρ2 + ρ3 + ρ4 (5.52)

where

ρ1 = λ2E[ΔwT (k − 1)RD(k − 1)SD(k)RSD(k)RD(k − 1)Δw(k − 1)]
ρ2 = λE[ΔwT (k − 1)RD(k − 1)SD(k)RSD(k)x(k)eo(k)]
ρ3 = λE[xT (k)SD(k)RSD(k)RD(k − 1)Δw(k − 1)eo(k)]
ρ4 = E[xT (k)SD(k)RSD(k)x(k)e2o(k)]

Now each term in equation (5.52) will be evaluated separately.

1- Evaluation of ρ1

First note that as k →∞, it can be assumed that RD(k) ≈ RD(k − 1), then

ρ1 ≈ λ2E[ΔwT (k − 1)RΔw(k − 1)] (5.53)

2- Evaluation of ρ2

Since each element of RD(k) is given by

rd,ij(k) =
k∑
l=0

λk−lx(l − i)x(l − j) (5.54)

for 0 ≤ i, j ≤ N . Therefore,

E[rd,ij(k)] =
k∑
l=0

λk−lE[x(l − i)x(l − j)]

If x(k) is stationary, r(i− j) = E[x(l − i)x(l − j)] is independent of the value l, then

E[rd,ij(k)] = r(i− j)1− λk+1

1− λ ≈ r(i− j)
1− λ (5.55)

Equation (5.55) allows the conclusion that

E[RD(k)] ≈ 1
1− λE[x(k)xT (k)] =

1
1− λR (5.56)
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In each step, it can be considered that

RD(k) =
1

1− λR + ΔR(k) (5.57)

where ΔR(k) is a symmetric error matrix with zero-mean stochastic entries that are independent of
the input signal. From equations (5.56) and (5.57), it can be concluded that

SD(k)R ≈ (1− λ)
[
I− (1− λ)R−1ΔR(k)

]
(5.58)

where in the last relation SD(k)ΔR(k) was considered approximately equal to

(1− λ)R−1ΔR(k)

by using equation (5.56) and disregarding second-order errors.

In the long run, it is known thatE[SD(k)R] = (1−λ)I, that means the second term inside the square
bracket in equation (5.58) is a measure of the perturbation caused by ΔR(k) in the product SD(k)R.
Denoting the perturbation by ΔI(k), that is

ΔI(k) = (1− λ)R−1ΔR(k) (5.59)

it can be concluded that

ρ2 ≈ λ(1− λ)E
{
ΔwT (k − 1)[I−ΔIT (k)]x(k)eo(k)

}
≈ λ(1− λ)E[ΔwT (k − 1)]E[x(k)eo(k)] = 0 (5.60)

where it was considered that ΔwT (k−1) is independent of x(k) and eo(k), ΔI(k) was also considered
an independent error matrix with zero mean, and finally we used the fact that x(k) and eo(k) are
orthogonal.

3- Following a similar approach it can be shown that

ρ3 ≈ λ(1− λ)E
{

xT (k)[I−ΔI(k)]Δw(k − 1)eo(k)
}

≈ λ(1− λ)E[xT (k)eo(k)]E[Δw(k − 1)] = 0 (5.61)

4- Evaluation of ρ4

ρ4 = E[xT (k)SD(k)RSD(k)RR−1x(k)e2o(k)]
≈ (1− λ)2E

{
xT (k)[I−ΔI(k)]2R−1x(k)

}
ξmin (5.62)

where equations (5.58) and (5.29) were used and eo(k) was considered independent of x(k) and
ΔI(k). By using the property that

E
{

xT (k)[I−ΔI(k)]2R−1x(k)
}

= trE
{
[I−ΔI(k)]2R−1x(k)xT (k)

}
and recalling that ΔI(k) has zero mean and is independent of x(k), then equation (5.62) is simplified
to

ρ4 = (1− λ)2tr{I + E[ΔI2(k)]}ξmin (5.63)
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where tr[·] means trace of [·], and we utilized the fact that E{R−1x(k)xT (k)} = I.

By using equations (5.53), (5.60), and (5.63), it follows that

E[ΔwT (k)RΔw(k)] = λ2E[ΔwT (k − 1)RΔw(k − 1)] + (1− λ)2tr{I + E[ΔI2(k)]}ξmin

(5.64)

Asymptotically, the solution of the above equation is

ξexc =
1− λ
1 + λ

tr{I + E[ΔI2(k)]}ξmin (5.65)

Note that the term given by E[ΔI2(k)] is not easy to estimate and is dependent on fourth-order
statistics of the input signal. However, in specific situations, it is possible to compute an approximate
estimate for this matrix. In steady state, it can be considered for white noise input signal that only
the diagonal elements of R and ΔR are important to the generation of excess MSE. Even when the
input signal is not white, this diagonal dominance can be considered a reasonable approximation in
most of the cases. From the definition of ΔI(k) in equation (5.59), it follows that

E[ΔI2ii(k)] = (1− λ)2
E[Δr2ii(k)]

[σ2
x]2

(5.66)

where σ2
x is variance of x(k). By calculating ΔR(k)−λΔR(k− 1) using equation (5.57), we show

that
Δrii(k) = λΔrii(k − 1) + x(k − i)x(k − i)− rii (5.67)

Squaring the above equation, applying the expectation operation, and using the independence between
Δrii(k) and x(k), it follows that

E[Δr2ii(k)] =λ2E[Δr2ii(k − 1)] + E
{
[x(k − i)x(k − i)− rii]2

}
(5.68)

Therefore, asymptotically

E[Δr2ii(k)] =
1

1− λ2σ
2
x2(k−i) =

1
1− λ2σ

2
x2 (5.69)

By substituting equation (5.69) in (5.66), it becomes

E[ΔI2ii(k)] =
1− λ
1 + λ

σ2
x2

(σ2
x)2

=
1− λ
1 + λ

K (5.70)

where K =
σ2

x2

(σ2
x)2 is dependent on input signal statistics. For Gaussian signals, K = 2 [7].

Returning to our main objective, the excess MSE can then be described as

ξexc = (N + 1)
1− λ
1 + λ

(
1 +

1− λ
1 + λ

K
)
ξmin (5.71)
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If λ is approximately one and K is not very large then

ξexc = (N + 1)
1− λ
1 + λ

ξmin (5.72)

this expression can be reached through a simpler analysis [6]. However, the more complete derivation
shown here can give more insight to the interpretation of the results obtained by using the RLS
algorithm, mainly when λ is not very close to one.

The misadjustment formula can be deduced from equation (5.71)

M =
ξexc

ξmin
= (N + 1)

1− λ
1 + λ

(
1 +

1− λ
1 + λ

K
)

(5.73)

As can be noted, the decrease of λ from one brings a fourth-order statistics term into the picture by
increasing the misadjustment. Then, the fast adaptation of the RLS algorithm, that corresponds to
smaller λ, brings a noisier steady-state response. Therefore, when working in a stationary environ-
ment the best choice for λ would be one, if the excess MSE in the steady state is considered high for
other values of λ. However, other problems such as instability due to quantization noise are prone
to occur when λ = 1.

5.4 BEHAVIOR IN NONSTATIONARY ENVIRONMENTS

In cases where the input signal and/or the desired signal are nonstationary, the optimal values of
the coefficients are time variant and described by wo(k). That means the autocorrelation matrix
R(k) and/or the cross-correlation vector p(k) are time variant. For example, typically in a system
identification application the autocorrelation matrix R(k) is time invariant while the cross-correlation
matrix p(k) is time variant, because in this case the designer can choose the input signal. On the
other hand, in equalization, prediction, and signal enhancement applications both the input and the
desired signal are nonstationary leading to time-varying matrices R(k) and p(k).

The objective in the present section is to analyze how close the RLS algorithm is able to track the
time-varying solution wo(k). Also, it is of interest to learn how the tracking error in w(k) affects
the output MSE [7]. Here, the effects of the measurement noise are not considered, since only the
nonstationary effects are desired. Also, both effects on the MSE can be added since, in general, they
are independent.

Recall from equations (5.8) and (5.9) that

w(k) = w(k − 1) + SD(k)x(k)[d(k)− xT (k)w(k − 1)] (5.74)

and
d(k) = xT (k)wo(k − 1) + e′

o(k) (5.75)

The error signal e′
o(k) is the minimum error at iteration k being generated by the nonstationarity of

the environment. One can replace equation (5.75) in (5.74) in order to obtain the following relation

w(k) = w(k − 1) + SD(k)x(k)xT (k)[wo(k − 1)− w(k − 1)] + SD(k)x(k)e′
o(k) (5.76)
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By taking the expected value of equation (5.76), considering that x(k) and e′
o(k) are approximately

orthogonal, and that w(k − 1) is independent of x(k), then

E[w(k)] = E[w(k − 1)] + E[SD(k)x(k)xT (k)] {wo(k − 1)− E[w(k − 1)]} (5.77)

It is now needed to compute E[SD(k)x(k)xT (k)] in the case of nonstationary input signal. From
equations (5.54) and (5.56), one can show that

RD(k) =
k∑
l=0

λk−lR(l) + ΔR(k) (5.78)

since E[RD(k)] =
k∑
l=0

λk−lR(l). The matrix ΔR(k) is again considered a symmetric error matrix

with zero-mean stochastic entries that are independent of the input signal.

If the environment is considered to be varying at a slower pace than the memory of the adaptive RLS
algorithm, then

RD(k) ≈ 1
1− λR(k) + ΔR(k) (5.79)

Considering that (1 − λ)||R−1(k)ΔR(k)|| < 1 and using the same procedure to deduce equation
(5.58), we obtain

SD(k) ≈ (1− λ)R−1(k)− (1− λ)2R−1(k)ΔR(k)R−1(k) (5.80)

it then follows that

E[w(k)] = E[w(k − 1)] +
{
(1− λ)E[R−1(k)x(k)xT (k)]

− (1− λ)2E[R−1(k)ΔR(k)R−1(k)x(k)xT (k)]
} {wo(k − 1)− E[w(k − 1)]}

≈ E[w(k − 1)] + (1− λ) {wo(k − 1)− E[w(k − 1)]} (5.81)

where it was considered that ΔR(k) is independent of x(k) and has zero expected value.

Now defining the lag-error vector in the coefficients as

lw(k) = E[w(k)]− wo(k) (5.82)

From equation (5.81), it can be concluded that

lw(k) = λlw(k − 1)− wo(k) + wo(k − 1) (5.83)

Equation (5.83) is equivalent to say that the lag is generated by applying the optimal instantaneous
value wo(k) through a first-order discrete-time filter as follows:

Li(z) = − z − 1
z − λWoi(z) (5.84)



2175.4 Behavior in Nonstationary Environments

The discrete-time filter transient response converges with a time constant given by

τ =
1

1− λ (5.85)

The time constant is of course the same for each individual coefficient. Note that the tracking ability of
the coefficients in the RLS algorithm is independent of the eigenvalues of the input signal correlation
matrix.

The lag in the coefficients leads to an excess MSE. In order to calculate the MSE suppose that the
optimal coefficient values are first-order Markov processes described by

wo(k) = λwwo(k − 1) + nw(k) (5.86)

where nw(k) is a vector whose elements are zero-mean white noise processes with variance σ2
w, and

λw < 1. Note that λ < λw < 1, since the optimal coefficients values must vary slower than the
filter tracking speed, that means 1

1−λ <
1

1−λw .

The excess MSE due to lag is then given by (see the derivations around equation (3.41))

ξlag = E[lTw(k)Rlw(k)]
= E

{
tr[Rlw(k)lTw(k)]

}
= tr

{
RE[lw(k)lTw(k)]

}
= tr

{
ΛE[l′w(k)l′Tw (k)]

}
=

N∑
i=0

λiE[l
′2
i (k)] (5.87)

For λw not close to one, it is a bit more complicated to deduce the excess MSE due to lag than for
λw ≈ 1. However, the effort is worth it because the resulting expression is more accurate. From
equation (5.84), we can see that the lag-error vector elements are generated by applying a first-order
discrete-time system to the elements of the unknown system coefficient vector. On the other hand,
the coefficients of the unknown system are generated by applying each element of the noise vector
nw(k) to a first-order all-pole filter, with the pole placed at λw. For the unknown coefficient vector
with the above model, the lag-error vector elements can be generated by applying the elements of
the noise vector nw(k) to a discrete-time filter with transfer function

H(z) =
−(z − 1)z

(z − λ)(z − λw)
(5.88)

This transfer function consists of a cascade of the lag filter with the all-pole filter representing the
first-order Markov process. The solution for the variance of the lag terms li can be computed through
the inverse Z-transform as follows:

E[l
′2
i (k)] =

1
2πj

∮
H(z)H(z−1)σ2

wz
−1 dz (5.89)

The above integral can be solved using the residue theorem as previously shown in the LMS algorithm
case.
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Using the solution for the variance of the lag terms of equation (5.89) for values of λw < 1, and
substituting the result in the last term of equation (5.87) it can be shown that

ξlag ≈ tr[R]σ2
w

λw(1 + λ2)− λ(1 + λ2
w)

(
1− λ
1 + λ

− 1− λw
1 + λw

)

=
(N + 1)σ2

wσ
2
x

λw(1 + λ2)− λ(1 + λ2
w)

(
1− λ
1 + λ

− 1− λw
1 + λw

)
(5.90)

where it was used the fact that tr[R] =
∑N
i=0 λi = (N + 1)σ2

x, for a tap delay line. It should be
noticed that assumptions such as the correlation matrix R being diagonal and the input signal being
white noise were not required in this derivation.

If λ = 1 and λw ≈ 1, the MSE due to lag tends to infinity indicating that the RLS algorithm in this
case cannot track any change in the environment. On the other hand, for λ < 1 the algorithm can
track variations in the environment, leading to an excess MSE that depends on the variance of the
optimal coefficient disturbance and on the input signal variance.

For λw = 1 and λ ≈ 1, it is possible to rewrite equation (5.90) as

ξlag ≈ (N + 1)
σ2

w
2(1− λ)

σ2
x (5.91)

The total excess MSE accounting for the lag and finite memory is given by

ξtotal ≈ (N + 1)
[
1− λ
1 + λ

ξmin +
σ2

wσ
2
x

2(1− λ)

]
(5.92)

By differentiating the above equation with respect to λ and setting the result to zero, an optimum
value for λ can be found that yields minimum excess MSE.

λopt =
1− σwσx

2σn

1 + σwσx

2σn

(5.93)

In the above equation we used σn =
√
ξmin. Note that the optimal value of λ does not depend on the

adaptive-filter order N , and can be used when it falls in an acceptable range of values for λ. Also,
this value is optimum only when quantization effects are not important and the first-order Markov
model (with λw ≈ 1) is a good approximation for the nonstationarity of the desired signal.

When implemented with finite-precision arithmetic, the conventional RLS algorithm behavior can
differ significantly from what is expected under infinite precision. A series of inconvenient effects can
show up in the practical implementation of the conventional RLS algorithm, such as divergence and
freezing in the updating of the adaptive-filter coefficients. Appendix C, presents a detailed analysis
of the finite-wordlength effects in the RLS algorithm.
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5.5 COMPLEX RLS ALGORITHM

In the complex data case the RLS objective function is given by

ξd(k) =
k∑
i=0

λk−i|ε(i)|2 =
k∑
i=0

λk−i|d(i)− wH(i)x(k)|2

=
k∑
i=0

λk−i [d(i)− wH(i)x(k)
] [
d∗(i)− wT (i)x∗(k)

]
(5.94)

Differentiating ξd(k) with respect to the complex coefficient w∗(k) leads to3

∂ξd(k)
∂w∗(k)

= −
k∑
i=0

λk−ix(i)[d∗(i)− wT (i)x∗(k)] (5.95)

The optimal vector w(k) that minimizes the least-squares error, is computed by equating the above
equation to zero that is

−
k∑
i=0

λk−ix(i)xH(i)w(k) +
k∑
i=0

λk−ix(i)d∗(i) =

⎡
⎢⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎥⎦

leading to the following expression

w(k) =

[
k∑
i=0

λk−ix(i)xH(i)

]−1 k∑
i=0

λk−ix(i)d∗(i)

= R−1
D (k)pD(k) (5.96)

The matrix inversion lemma to the case of complex data is given by

SD(k) = R−1
D (k) =

1
λ

[
SD(k − 1)− SD(k − 1)x(k)xH(k)SD(k − 1)

λ+ xH(k)SD(k − 1)x(k)

]
(5.97)

The complete conventional RLS algorithm is described in Algorithm 5.3.

An alternative complex RLS algorithm has an updating equation described by

w(k) = w(k − 1) + e∗(k)SD(k)x(k) (5.98)

where
e(k) = d(k)− wH(k − 1)x(k) (5.99)

With equation (5.98), it is straightforward to generate an alternative conventional RLS algorithm as
shown in Algorithm 5.4.

3Again the reader should recall that when computing the gradient with respect to w∗(k), w(k) is treated as a constant.
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Algorithm 5.3

Conventional Complex RLS Algorithm

Initialization
SD(−1) = δI

where δ can be the inverse of the input signal power estimate
pD(−1) = x(−1) = [0 0 . . . 0]T

Do for k ≥ 0 :
SD(k) = 1

λ [SD(k − 1)− SD(k−1)x(k)xH(k)SD(k−1)
λ+xH(k)SD(k−1)x(k)

]
pD(k) = λpD(k − 1) + d∗(k)x(k)
w(k) = SD(k)pD(k)

If necessary compute
y(k) = wH(k)x(k)
ε(k) = d(k)− y(k)

Algorithm 5.4

Alternative Complex RLS Algorithm

Initialization
SD(−1) = δI

where δ can be the inverse of an estimate of the input signal power
x(−1) = w(−1) = [0 0 . . . 0]T

Do for k ≥ 0
e(k) = d(k)− wH(k − 1)x(k)
ψ(k) = SD(k − 1)x(k)

SD(k) = 1
λ [SD(k − 1)− ψ(k)ψH

(k)

λ+ψH
(k)x(k)

]

w(k) = w(k − 1) + e∗(k)SD(k)x(k)
If necessary compute
y(k) = wH(k)x(k)
ε(k) = d(k)− y(k)
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5.6 SIMULATION EXAMPLES

In this section, some adaptive-filtering problems described in the last two chapters are solved using
the conventional RLS algorithm presented in this chapter.

Example 5.3: System Identification Simulations

The conventional RLS algorithm is employed in the identification of the system described in the
subsection 3.6.2. The forgetting factor is chosen as λ = 0.99.

Solution:

In the first test, we address the sensitivity of the RLS algorithm to the eigenvalue spread of the input
signal correlation matrix. The measured simulation results are obtained by ensemble averaging 200
independent runs. The learning curves of the mean-squared a priori error are depicted in Fig. 5.4, for
different values of the eigenvalue spread. Also, the measured misadjustment in each example is given
in Table 5.1. From these results, we conclude that the RLS algorithm is insensitive to the eigenvalue
spread. It is worth mentioning at this point that the convergence speed of the RLS algorithm is
affected by the choice of λ, since a smaller value of λ leads to faster convergence while increasing
the misadjustment in stationary environment. Table 5.1 shows the misadjustment predicted by theory,
calculated using the relation repeated below. As can be seen from this table the analytical results
agree with those obtained through simulations.

M = (N + 1)
1− λ
1 + λ

(1 +
1− λ
1 + λ

K)

Table 5.1 Evaluation of the RLS Algorithm

Misadjustment
λmax
λmin

Experiment Theory

1 0.04211 0.04020

20 0.04211 0.04020

80 0.04547 0.04020

The conventional RLS algorithm is implemented with finite-precision arithmetic, using fixed-point
representation with 16, 12, and 10 bits, respectively. The results presented are measured before any
sign of instability is noticed. Table 5.2 summarizes the results of the finite-precision implementation
of the conventional RLS algorithm. Note that in most cases there is a close agreement between the
measurement results and those predicted by the equations given below. These equations correspond
to equations (C.37) and (C.48) derived in Appendix C.

E[||Δw(k)Q||2]≈(1− λ)(N + 1)
2λ

σ2
n + σ2

e

σ2
x

+
(N + 1)σ2

w
2λ(1− λ)
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Figure 5.4 Learning curves for RLS algorithm for eigenvalue spreads: 1, 20, and 80; λ = 0.99.

ξ(k)Q ≈ ξmin + σ2
e +

(N + 1)σ2
wσ

2
x

2λ(1− λ)

For the simulations with 12 and 10 bits, the discrepancy between the measured and theoretical
estimates of E[||Δw(k)Q||2] are caused by the freezing of some coefficients.

If the results presented here are compared with the results presented inTable 3.2 for the LMS, we notice
that both the LMS and the RLS algorithms performed well in the finite-precision implementation.
The reader should bear in mind that the conventional RLS algorithm requires an expensive strategy
to keep the deterministic correlation matrix positive definite, as discussed in Appendix C.

Table 5.2 Results of the Finite-Precision Implementation of the RLS Algorithm

ξ(k)Q E[||Δw(k)Q||2]
No. of bits Experiment Theory Experiment Theory

16 1.566 10−3 1.500 10−3 6.013 10−5 6.061 10−5

12 1.522 10−3 1.502 10−3 3.128 10−5 6.261 10−5

10 1.566 10−3 1.532 10−3 6.979 10−5 9.272 10−5

The simulations related to the experiment described for nonstationary environments are also per-
formed. From the simulations we measure the total excess MSE, and then compare the results to
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those obtained with the expression below.

ξexc ≈ (N + 1)
1− λ
1 + λ

(1 +
1− λ
1 + λ

K)ξmin +
(N + 1)σ2

wσ
2
x

λw(1 + λ2)− λ(1 + λ2
w)

(
1− λ
1 + λ

− 1− λw
1 + λw

)

An attempt to use the optimal value of λ is made. The predicted optimal value, in this case, is too
small and as a consequence λ = 0.99 is used. The measured excess MSE is 0.0254, whereas the
theoretical value predicted by the above equation is 0.0418. Note that the theoretical result is not as
accurate as all the previous cases discussed so far, due to a number of approximations used in the
analysis. However, the above equation provides a good indication of what is expected in the practical
implementation. By choosing a smaller value for λ a better tracking performance is obtained, a
situation where the above equation is not as accurate.

�

Example 5.4: Signal Enhancement Simulations

We solved the same signal enhancement problem described in the subsection 4.7.1 with the conven-
tional RLS and LMS algorithms.

Solution:

For the LMS algorithm, the convergence factor is chosen μmax/5. The resulting value for μ in the
LMS case is 0.001, whereas λ = 1.0 is used for the RLS algorithm. The learning curves for the
algorithms are shown in Fig. 5.5, where we can verify the faster convergence of the RLS algorithm.
By plotting the output errors after convergence, we noted the large variance of the MSE for both
algorithms. This result is due to the small signal to noise ratio, in this case. Fig. 5.6 depicts the
output error and its DFT with 128 points for the RLS algorithm. In both cases, we can clearly detect
the presence of the sinusoid.

�

5.7 CONCLUDING REMARKS

In this chapter, we introduced the conventional RLS algorithm and discussed various aspects related
to its performance behavior. Much of the results obtained herein through mathematical analysis are
valid for the whole class of RLS algorithms to be presented in the following chapters, except for the
finite-precision analysis since that depends on the form the internal calculations of each algorithm
are performed. The analysis presented here is far from being complete. However, the main aspects of
the conventional RLS have been addressed, such as: convergence behavior and tracking capabilities.



224 Chapter 5 Conventional RLS Adaptive Filter

-15

-10

-5

0

5

10

15

20

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 e
rr

or

Iterations, k

(a)

-8

-6

-4

-2

0

2

4

6

0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 e
rr

or

Iterations, k

(b)

Figure 5.5 Learning curves for the (a) LMS and (b) RLS algorithms.
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The interested reader should consult [9]-[11] for some further results. Appendix C complements this
chapter by addressing the finite-precision analysis of the conventional RLS algorithm.

From the analysis presented, one can conclude that the computational complexity and the stability
in finite-precision implementations are two aspects to be concerned. When the elements of the input
signal vector consist of delayed versions of the same signal, it is possible to derive a number of
fast RLS algorithms whose computational complexity is of order N per output sample. Several
different classes of these algorithms are presented in the following chapters. In all cases, their
stability conditions in finite-precision implementation are briefly discussed.

For the general case where the elements of the input signal vector have different origins the QR-RLS
algorithm is a good alternative to the conventional RLS algorithm. The stability of the QR-RLS
algorithm can be easily guaranteed.

The conventional RLS algorithm is fully tested in a number of simulation results included in this
chapter. These examples were meant to verify the theoretical results discussed in the present chapter
and to compare the RLS algorithm with the LMS algorithm.

The LMS algorithm is usually referred to as stochastic gradient algorithm originated from the stochas-
tic formulation of the Wiener filter which in turn deals with stationary noises and signals. The RLS
algorithm is derived from a deterministic formulation meant to achieve weighted least-squares error
minimization in a sequential recursive format. A widely known generalization of the Wiener filter is
the Kalman filter which deals with nonstationary noises and signals utilizing a stochastic formula-
tion. However, it is possible to show that the discrete-time version of the Kalman filtering algorithm
can be considered to be a generalization of the RLS algorithm. In Appendix D we present a brief
description of Kalman filters as well as its relationship with the RLS algorithm.
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5.9 PROBLEMS

1. The RLS algorithm is used to predict the signal x(k) = cos πk3 using a second-order FIR filter
with the first tap fixed at 1. Given λ = 0.98, calculate the output signal y(k) and the tap
coefficients for the first 10 iterations. Note that we aim the minimization of E[y2(k)].

Start with wT (−1) = [1 0 0] and δ = 100.

2. Show that the solution in equation (5.4) is a minimum point.
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3. Show that SD(k) approaches a null matrix for large k, when λ = 1.

4. Suppose that the measurement noise n(k) is a random signal with zero-mean and the probability
density with normal distribution. In a sufficient-order identification of an FIR system with
optimal coefficients given by wo, show that the least-squares solution with λ = 1 is also
normally distributed with mean wo and covariance E[SD(k)σ2

n].

5. Prove that equation (5.42) is valid. What is the result when n(k) has zero mean and is correlated
to the input signal x(k)?

Hint: You can use the relation E[e2(k)] = E[e(k)]2 + σ2[e(k)], where σ2[·] means variance of
[·].

6. Consider that the additive noise n(k) is uncorrelated with the input and the desired signals and
is also a nonwhite noise with autocorrelation matrix Rn. Determine the transfer function of a
prewhitening filter that applied to d′(k) + n(k) and x(k) generates the optimum least-squares
solution wo = R−1p for k →∞.

7. Show that if the additive noise is uncorrelated with d′(k) and x(k), and nonwhite, the least-
squares algorithm will converge asymptotically to the optimal solution.

8. In problem 4, when n(k) is correlated to x(k), is wo still the optimal solution? If not, what is
the optimal solution?

9. Show that in the RLS algorithm the following relation is true

ξd(k) = λξd(k − 1) + ε(k)e(k)

where e(k) is the a priori error as defined in equation (5.8).

10. Prove the validity of the approximation in equation (5.80).

11. Demonstrate that the updating formula for the complex RLS algorithm is given by equation
(5.98).

12. Show that for an input signal with diagonal dominant correlation matrix R the following ap-
proximation related to equations (C.28) and (C.32) is valid.

E{NSD
(k)x(k)xT (k)cov[Δw(k − 1)Q]x(k)xT (k)NSD

(k)} ≈ σ2
SD

σ4
xtr {cov[Δw(k − 1)Q]} I

13. Derive the equations (C.35), (C.36), and (C.37).

14. The conventional RLS algorithm is applied to identify a 7th-order time-varying unknown system
whose coefficients are first-order Markov processes with λw = 0.999 and σ2

w = 0.033. The
initial time-varying system multiplier coefficients are

wTo = [0.03490 − 0.01100 − 0.06864 0.22391 0.55686 0.35798 − 0.02390 − 0.07594]

The input signal is Gaussian white noise with variance σ2
x = 1 and the measurement noise is

also Gaussian white noise independent of the input signal and of the elements of nw(k), with
variance σ2

n = 0.01.
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(a) For λ = 0.97, compute the excess MSE.

(b) Repeat (a) for λ = λopt.

(c) Simulate the experiment described, measure the excess MSE, and compare to the calculated
results.

15. Reduce the value of λw to 0.97 in problem 14, simulate, and comment on the results.

16. Suppose a 15th-order FIR digital filter with multiplier coefficients given below is identified
through an adaptive FIR filter of the same order using the conventional RLS algorithm. Consider
that fixed-point arithmetic is used.

Additional noise : white noise with variance σ2
n = 0.0015

Coefficient wordlength: bc = 16 bits
Signal wordlength: bd = 16 bits
Input signal: Gaussian white noise with variance σ2

x = 0.7
λ = λopt

wTo = [0.0219360 0.0015786 − 0.0602449 − 0.0118907 0.1375379
0.0574545 − 0.3216703 − 0.5287203 − 0.2957797 0.0002043 0.290670
− 0.0353349 − 0.0068210 0.0026067 0.0010333 − 0.0143593]

(a) Compute the expected value for ||Δw(k)Q||2 and ξ(k)Q for the described case.

(b) Simulate the identification example described and compare the simulated results with those
obtained through the closed form formulas.

(c) Plot the learning curves for the finite- and infinite-precision implementations. Also, plot
E[||Δw(k)||2] versus k in both cases.

17. Repeat the above problem for the following cases

(a) σ2
n = 0.01, bc = 9 bits, bd = 9 bits, σ2

x = 0.7, λ = λopt.

(b) σ2
n = 0.1, bc = 10 bits, bd = 10 bits, σ2

x = 0.8, λ = λopt.

(c) σ2
n = 0.05, bc = 8 bits, bd = 16 bits, σ2

x = 0.8, λ = λopt.

18. In problem 17, compute (do not simulate) E[||Δw(k)Q||2], ξ(k)Q, and the probable number of
iterations before the algorithm stop updating for λ = 1, λ = 0.98, λ = 0.96, and λ = λopt.

19. Repeat problem 16 for the case where the input signal is a first-order Markov process with
λx = 0.95.

20. A digital channel model can be represented by the following impulse response:

[−0.001 − 0.002 0.002 0.2 0.6 0.76 0.9 0.78 0.67 0.58
0.45 0.3 0.2 0.12 0.06 0 − 0.2 − 1 − 2 − 1 0 0.1]

The channel is corrupted by Gaussian noise with power spectrum given by

|S(ejω)|2 = κ′|ω|3/2

where κ′ = 10−1.5. The training signal consists of independent binary samples (-1,1).

Design an FIR equalizer for this problem and use the RLS algorithm. Use a filter of order 50
and plot the learning curve.
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21. For the previous problem, using the maximum of 51 adaptive-filter coefficients, implement a
DFE equalizer and compare the results with those obtained with the FIR equalizer. Again use
the RLS algorithm.

22. Use the complex RLS algorithm to equalize a channel with the transfer function given below.
The input signal is a four QAM signal representing a randomly generated bit stream with the

signal to noise ratio σ2
x̃

σ2
n

= 20 at the receiver end, that is, x̃(k) is the received signal without
taking into consideration the additional channel noise. The adaptive filter has 10 coefficients.

H(z) = (0.34− 0.27j) + (0.87 + 0.43j)z−1 + (0.34− 0.21j)z−2

(a) Use an appropriate value for λ in the range 0.95− 0.99, run the algorithm and comment on
the convergence behavior.
(b) Plot the real versus imaginary parts of the received signal before and after equalization.
(c) Increase the number of coefficients to 20 and repeat the experiment in (b).

23. In a system identification problem the input signal is generated from a four QAM of the form

x(k) = xre(k) + jxim(k)

where xre(k) and xim(k) assume values ±1 randomly generated. The unknown system is
described by

H(z) = 0.5 + 0.2j+ (−0.1 + 0.4j)z−1 + (0.2− 0.4j)z−2 + (0.2 + 0.7j)z−3

The adaptive filter is also a third-order complex FIR filter, and the additional noise is zero-
mean Gaussian white noise with variance σ2

n = 0.3. Using the complex RLS algorithm run an
ensemble of 20 experiments, and plot the average learning curve.

24. Apply the Kalman filter to equalize the system

H(z) =
0.19z
z − 0.9

when the additional noise is a uniformly distributed white noise with variance σ2
n = 0.1, and

the input signal to the channel is a Gaussian noise with unit variance.




