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ABSTRACT

The LMS algorithm invented by Widrow and Ho� in
���� is the simplest� most robust� and one of the most
widely used algorithms for adaptive �ltering� Unfortu�
nately� its convergence rate is highly dependent upon the
conditioning of the autocorrelation matrix of its inputs�
the higher the input eigenvalue spread� the slower the
convergence of the adaptive weights�

This problem can be overcome by preprocessing the
inputs to the LMS �lter with a �xed data�independent
transformation that� at least partially� decorrelates the
inputs� Typically� the preprocessing consists of a DFT or
a DCT transformation followed by a power normalization
stage� The resulting algorithms are called DFT�LMS and
DCT�LMS� This technique is to be contrasted with more
traditional approaches such as recursive least squares al�
gorithms� where an estimate of the inverse input autocor�
relation matrix is used to improve the �lter convergence
speed�
After placing DFT�LMS and DCT�LMS into context�

we propose three di�erent approaches to explain the al�
gorithms both intuitively and analytically� We discuss
the convergence speed improvement brought by these al�
gorithms over conventional LMS� and we make a short
analysis of their computational cost�

INTRODUCTION

It is well know from the theory of LMS 	Widrow� ��
��
that the mean square error of an adaptive �lter trained
with the LMS algorithm decreases over time as a sum of
exponentials whose time constants are inversely propor�
tional to the eigenvalues of the autocorrelation matrix of
the inputs to the �lter� This means that small eigenval�
ues create slow convergence modes in the MSE function�
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Large eigenvalues� on the other hand� put a limit on the
maximum learning rate that can be chosen without en�
countering stability problems 	Widrow���
��� It results
from these two counteracting factors that the best con�
vergence properties are obtained when all the eigenvalues
are equal� that is when the input autocorrelation matrix
is proportional to the identity matrix� In this case� the in�
puts are perfectly uncorrelated and have equal power� in
other words� they are samples of a white noise process� As
the eigenvalue spread of the input autocorrelation matrix
increases� the convergence speed of LMS deteriorates�
DFT�LMS and DCT�LMS o�er a solution to this prob�

lem� By preprocessing the input data with a well�chosen
but �xed transformation that does not depend on the in�
puts� and with a simple power normalization stage� they
cause the input eigenvalues of the LMS �lter to cluster
around one� and speed up the convergence of the adap�
tive weights�
Recursive least squares algorithms also decorrelate the

inputs by preprocessing them� but they use to that e�ect
an estimate of the inverse autocorrelation matrix� which
thus depends on the actual inputs�
The performance of the algorithms based on data�

independent transformations clearly depends on the or�
thogonalizing capabilities of the transform used� No gen�
eral proof exists that demonstrates the superiority of one
transform over the others� DFT�LMS �rst introduced by
Narayan 	��
� is the simplest algorithm of this family�
both because of the exponential nature of the DFT and
because scientists have developed a strong intuition for
the Fourier transform� It is our experience though that in
most practical situations DCT�LMS performs much bet�
ter than DFT�LMS� In addition� it has the advantage over
DFT�LMS to be real valued�
In this paper� we �rst compare the general philosophies

of DFT�DCT�LMS and recursive least squares 	RLS� al�
gorithms� We then explain� through three di�erent ap�
proaches� the mechanisms of DFT�LMS and DCT�LMS�
We present new results on convergence speed� and con�
clude with a short analysis of computational cost�

�



DFT�DCT�LMS VS� RLS

By iteratively calculating the inverse autocorrelation
matrix of the input data and using it to compute the cur�
rent �lter weights� RLS implements an exact least squares
solution 	Franklin� ����� Haykin� ������ The major ad�
vantages of RLS over LMS are its relatively low sensitivity
to input eigenvalue spread� its fast convergence� and the
fact that� at least for stationary inputs� the quality of its
steady�state solution keeps on improving over time� On
the other hand� RLS su�ers from poor tracking capabili�
ties in nonstationary environments 	Bershad� ��
��� from
high computational cost� and from lack of robustness un�
der certain input conditions�

The computational cost and robustness issues have
been addressed by researchers in developing other exact
least squares algorithms� the most famous of them being
the recursive lattice �lter algorithms� Lattice �lters typ�
ically require less computations per iteration than RLS�
but even their most robust forms can present stability
problems 	North� ����� In addition� they are long and
complicated to implement�

LMS is intrinsically slow because it does not decor�
relate its inputs prior to adaptive �ltering� but prepro�
cessing the inputs with an estimate of the inverse input
autocorrelation matrix in the fashion of RLS leads to the
problems cited above� The solution we propose in the
next section consists of preprocessing the inputs to the
LMS �lter with a �xed transformation that does not de�
pend on the actual input data� The decorrelation will
only be approximative� but the computational cost will
remain very low� and the robustness and tracking ability
of LMS will not be a�ected�

DFT�LMS AND DCT�LMS

The DFT�LMS and DCT�LMS algorithms are com�
posed of three simple stages 	see Fig� ��� First� the tap�
delayed inputs are preprocessed by a discrete Fourier or
cosine transform� The transformed signals are then nor�
malized by the square root of their power� The resulting
equal power signals are inputted to an adaptive linear
combiner whose weights are adjusted using the LMS al�
gorithm� With these two algorithms� the orthogonalizing
step is data independent� only the power normalization
step is data dependent 	i�e� the power levels used to nor�
malize the signals are estimated from the actual data��
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Figure �� DFT�LMS and DCT�LMS block diagram�

A �ltering approach

The n�point discrete Fourier�cosine transform can
be seen as a n � n linear transformation from in�
puts xk � 	xk� xk��� ���� xk�n���t to outputs uk �
	uk	���� uk	��� ���� uk	n � ���t� where uk	i� is the ith out�
put of the DFT�DCT at time k 	see Fig� ��� Each output
uk	i� can be expressed as a weighted sum of the inputs
xk�l� for l � ���n � �� that is as the convolution of xk
with some discrete impulse response hi� In the case of
the DFT�
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The associated transfer function�
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represents a bandpass �lter of central frequency ��i�n�
The DFT can thus be seen as a bank of bandpass �lters
whose central frequencies span the interval �� ���� Fig�
ure � shows the magnitude of the transfer functionsHi	��
of an 
� 
 DFT�
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 DFT� magnitudes of the transfer functions of a bank of bandpass �lters�



At each time k� the input signal xk is decomposed into
n signals lying in di�erent frequency bins� If the bandpass
�lters were perfect� the outputs of the DFT would be per�
fectly uncorrelated� but due to the presence of side lobes
	see Fig��� there is some leakage from each frequency bin
to the others� and thus some correlation between the out�
put signals�
In the case of the DCT� the ith impulse response hi	l�

is given by

hi	l� �

r
�

n
Ki cos	

i	l � �����

n
� � l � � �� n� �

where Ki � ��
p
� for i � � and � for i � � �� n� �� The

corresponding transfer functions are given by
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r
�

n
Ki cos	

i�

�n
�
	�� e�j��	�� 	���ie�j�n�
�� �cos	 i�

n
�e�j� � e��j�

�

They still represent a bank of bandpass �lters but with
di�erent central frequencies� di�erent main lobe and side
lobes� and di�erent leakage properties�

A geometrical approach

The DFT�LMS and DCT�LMS algorithms can also be
explained and illustrated geometrically� The DFT and
DCT matrices de�ned by

F	k� l� �

r
�

n
ej

��kl

n �

C	k� l� �

r
�

n
Kk cos	

k	l � �����

n
��

for k� l � � �� n� �� are unitary matrices 	i�e� their rows
are orthogonal to one another and have euclidian norm
one�� Unitary transformations perform only rotations and
symmetries� they do not modify the shape of the object
they transform�
The mean square error of LMS is a quadratic func�

tion of the weights 	Widrow� ��
��� Writing the MSE
as a function of the weights and �xing it to some con�
stant value� we get an implicit quadratic function of
the weights that represents a hyperellipsoid in the n�
dimensional weight space� A unitary transformation of
the inputs rotates the hyperellipsoid and brings it into
approximate alignment with the coordinate axes� The
slight imperfection in alignment is primarily due to leak�
age in the transform� DCT or DFT� The idea is illustrated
for a simple ��weight case in Fig� � Figure 	a� shows

the original MSE ellipse� Fig� 	b� shows it after transfor�
mation by a �� � DCT matrix� The shape of the ellipse
is unchanged and so are the eigenvalues of the autocorre�
lation matrix�

The power normalization stage 	cf� Fig� �� can be
viewed geometrically as a transformation that� while pre�
serving the elliptical nature of the MSE� forces it to cross
all the coordinate axes at the same distance from the cen�
ter� This operation is not unitary and it does modify the
eigenvalue spread� It almost always improves it� The bet�
ter the alignment of the hyperellipsoid with the coordi�
nate axes� the more e�cient the power normalization will
be 	a hyperellipsoid perfectly aligned being transformed
in a hypersphere�� Figure  shows the result of power
normalization for our example� The new ellipse is more
round�shaped and has lower eigenvalue spread� This is
very typical�
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Figure � MSE hyperellipsoid 	a� before transformation�
	b� after DCT� 	C� after power normalization�

An analytical approach

In order to �nd precise information on how well a given
transform decorrelates certain classes of input signals� one
must set the problem in a more mathematical framework�
Transforming a signal X by a matrix T 	the DFT or
the DCT matrix�� transforms its autocorrelation matrix
R � E	XXt� into B � E	TXXtTt� � TRTt� The
power of TX can be found on the main diagonal of B�
Power normalizing TX transforms its elements TXi into
TXi�

p
Power of 	TXi�� having the autocorrelation ma�

trix

S � 	diagB�����B 	diagB������



If T decorrelated X exactly� B would be diagonal and
S would be the identity matrix I and would have all its
eigenvalues equal to one� but since the DFT and the DCT
are not perfect decorrelators� this does not work out ex�
actly� Some theory has been developed in the past about
the decorrelating ability of the DFT and the DCT 	see for
example Grenander� ��
�� Gray� ����� Rao� ����� but the
results presented in the literature are in general too weak
to allow us to infer anything about the magnitude of the
individual eigenvalues of S� which is our main interest�
For example� it has been proven that the autocorrelation
matrixB obtained after the DFT or the DCT �asymptot�
ically converges� to a diagonal matrix� �asymptotically�
meaning as n� the size of B� tends to in�nity� and �con�
verges� being understood in a weak norm sense�� From
this result� we can deduce that S will asymptotically con�
verge to identity as n tends to in�nity� However� we can
not conclude anything about the possible convergence of
the individual eigenvalues of S to one� everything depends
on how and how fast S converges to I� To obtain stronger
results� further assumptions are necessary� for example
regarding the class of input signals to be considered�

Eigenvalues and eigenvalue spread
for Markov�� inputs

First order Markov signals are a very general� practical�
and yet simple class of signals� They result from white
noise passing through a single pole lowpass �lter� Such
a �lter has an impulse response that decreases geometri�
cally with a rate � given by the �lter pole� A Markov��
input signal Xk � 	xk� xk��� ���� xk�n���t of parameter
� � �� �� has an autocorrelation matrix R equal to

R �

�
BBBBB�

� � �� � � � �n��

� � � � � � �n��

�� � �
���

���
� � �

���
�n�� �n�� � � � �

�
CCCCCA

For n large 	theoretically for n tending to in�nity�� the
minimumand maximumeigenvalues of an autocorrelation
matrixR are given by the minimumand maximumof the
power spectrum of the signal that generated this autocor�
relation 	Grenander� ��
�� Gray� ������ This result is a

�Two matrices converge to one another in a weak norm sense

when their weak norms converge to one another� The weak norm

of a matrix is de�ned as the square root of the arithmetic average

of its eigenvalues�

direct consequence of the fact that R is Toeplitz� It can
easily be checked that in our case the power spectrum of
xk is given by

P 	�� �
��X

l���

�le�j�l �
�

�� ��cos	�� � ��
�

Its maximum and minimum are respectively ��	� � ���

and ��	������ The eigenvalue spread of R thus tends to

Eigenvalue spread before transformation � 	
� � �

�� �
���

This eigenvalue spread can be extremely large for highly
correlated signals 	� close to ���
The autocorrelation S of the signals obtained after

transformation by the DFT or the DCT and after power
normalization is not Toeplitz anymore� and the previous
theory can not be applied� The analysis is further compli�
cated by the fact that only asymptotically do the eigen�
values stabilize to �xed magnitudes independent of n� and
that power normalization is a nonlinear operation� Suc�
cessive matrix manipulations and passages to the limit
allowed us to prove the following asymptotic results 	see
Beaufays� ���� ����� for more details��

Eigenvalue spread after DFT �
� � �

�� �
�

Eigenvalue spread after DCT � � � ��

Note that with the DCT� the asymptotic eigenvalue
spread is never higher than ��
As a numerical example� let the correlation � be equal

to ����� The eigenvalue spread before transformation is
����� after the DFT �� after the DCT ����� In this case�
using the DCT�LMS instead of LMS would speed up the
�lter weight convergence by a factor roughly equal to ����
These results con�rm� for a simple but very practical

class of signals� the high quality of the DCT as a signal
decorrelator�

Computational cost of DFT�LMS
and DCT�LMS

In addition to their fast convergence and robustness�
DFT�LMS and DCT�LMS have the advantage of a very
low computational cost� The inputs xk� xk��� ���� xk�n��
being delayed samples of the same signal� the DFT�DCT
can be computed in O	n� operations� For the DFT�

uk	i� �
n��X
l��

ej
��il

n xk�l



� xk �
nX
l��

ej
��il

n xk�l � ej
��in

n xk�n

� ej
��i

n uk��	i� � xk � xk�n�

The uk	i��s can thus be found by an O	n� recursion from
the uk��	i��s� This type of DFT is sometimes called slid�
ing DFT� A similar O	n� recursion can be derived with
more algebra for the DCT�

u
DCT

k �i� � u
DCT

k�� �i�cos�
�i

n
��

u
DST

k �i�sin�
�i

n
� �

r
�

n
cos�

�i

�n
��xk � ����ixk�n��

u
DST

k �i� � u
DST

k�� �i�cos�
�i

n
� �

u
DCT

k �i�sin�
�i

n
� �

r
�

n
sin�

�i

�n
��xk � ����ixk�n��

uDCT
k 	i� is the ith output of the DCT� uDST

k 	i� is the ith

output of a DST 	discrete sine transform� de�ned exactly
like the DCT but replacing �cos� by �sin� 	interlacing
two recursions is necessary and comes basically from the
fact that cos	a � b� � cos	a�cos	b� � sin	a�sin	b���

The power levels of the uk	i��s can also be computed
by a simple O	n� recursion�

Pk	i� � �Pk��	i� � u�k	i��

where Pk	i� � 	power of uk	i���	�� ��� P��	i� is initial�
ized to zero� and � � �� �� is a forgetting factor�

Finally� the last step� the LMS adaptation of the vari�
able weights� is O	n�� The overall algorithm is thus O	n��

CONCLUSION

For the most part� the DCT�LMS algorithm is superior
to the DFT�LMS algorithm� Both are robust algorithms�
containing three robust steps� transformation� power nor�
malization 	like automatic gain control in a radio or TV��
and LMS adaptive �ltering� These algorithms are easy
to program and to understand� They use a minimum of
computation� only slightly more than LMS alone� They
work almost as well as RLS but don�t have robustness
problems� The lattice forms of RLS are more robust than
RLS� but they are much more di�cult to program and to
understand� All in all� the DFT�LMS and DCT�LMS al�
gorithms should �nd increased use in practical real�time
applications�
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