
Page 1

1

H5H4, H5E7 H5H4, H5E7 –– lecture 5lecture 5
Synchronous Data Flow GraphsSynchronous Data Flow Graphs

Control Flow ModelsControl Flow Models
I. Verbauwhede

Acknowledgement: H. De Man, P. Schaumont
2009

K.U.Leuven

2

Last classLast class

• Presentation by Mr. R. Valvekens
– Main message(s)?

• Models of computation
• Many representations of time:

– Total order
– Partial order

• For our purposes:
– Synchronous data flow graphs
– Control flow graphs

• Continue on this today

Page 2

3

TodayToday

• Control flow graphs
– FSM
– FSMD
– Completeness
– Hierarchy
– Communication
– Implementation issues

4

ReadingReading

• P. Schaumont, GEZEL user’s manual,
http://rijndael.ece.vt.edu/gezel2/

Background reading:
• D. Harel, “StateCharts: A Visual formalism for

complex systems,” Science of computer
programming 8 (1987), pages 231-274, Elsevier North
Holland.

– We will use StateCharts to illustrate control flow concepts in a
visual manner.

– In reality StateCharts is used for complex software systems and
not really for hardware design.

• Davio, Deschamps, Thayse, “Digital systems with
algorithm implementation,” Wiley, 1983.

Page 3

5

Remember: a typical embedded systemRemember: a typical embedded system

Environment
x’=f(x,t)

CT
CV

DT
CV

DataFlow DSP

ControlFlow

CT
CV

DT
CV

DT
DV

Analog

Digital

DAC ADC
CE

Sensor Actuator

s
s2

s3

a
c

b

Concurrent Processes
Real-Time. Time-tyranny
Heterogeneous

Streams

Discrete Events

status mode

User

Environ-
ment

Signal
Part

Control
Part

6

Control FlowControl Flow
• Systems reacting to external discrete events.
• Upon events enter a certain mode and perform some

actions on data (in synchronous way)
• The mode reached depends on a history of input

events
• The same history should produce the same mode =

“deterministic”
• A mode corresponds to a state

Control part

Events

Data
Events

s1
s2

Data

•The prototype of a reactive system is a behavioral FSMD.

Page 4

7

FSM (Finite State Machine)FSM (Finite State Machine)

Mealy automaton:

FSM = (I, O, Q, M, N)
With I = input set
O= output set
Q = state set
M = set of functions QxI -> Q
N = set of functions QxI -> O

Moore automaton:

FSM = (I,O,Q,M,N)
I = same
O = same
Q = same
M = same
N = output function, Q -> O

A

B

C

0,α
1,α

1,γ

1,β

0,γ
-

0,− A/ α
B/-

C/ γ

1

0

1

1

[ref: Davio]

8

Formal definitionFormal definition
An FSM is a 6-tuple F<S, I, O, F, H, s0>

– S is a set of all states {s0, s1, …, sl}
– I is a set of inputs {i0, i1, …, im}
– O is a set of outputs {o0, o1, …, on}
– F is a next-state function (S x I → S)
– H is an output function (S → O)
– s0 is an initial state

Moore-type
– Associates outputs with states (as given above, H maps S → O)

Mealy-type
– Associates outputs with transitions (H maps S x I → O)

Shorthand notations to simplify descriptions
– Implicitly assign 0 to all unassigned outputs in a state
– Implicitly AND every transition condition with clock edge (FSM is

synchronous)
[ref: Davio]

Page 5

9

GEZEL: Finite State MachineGEZEL: Finite State Machine

s0

s1

• Initial State: s0
• Normal State: s1
• State Transitions:

s0 -> s1, s1 -> s0
• Actions: a1, a2

• Static sequencing

a2

a1

fsm twostate {
initial s0;
state s1;
@s0 (a1) -> s1;
@s1 (a2) -> s0;

}

twostate

10

GEZEL: Conditional State TransitionsGEZEL: Conditional State Transitions

s0

s1a2

!w/a1

twostate

w/_

• State transition condition: w
• State transition from s0:

if w then goto s0 else do a1 goto s1

• Dynamic sequencing
• Conditions need to be logically complete

fsm twostate {
initial s0;
state s1;
@s0 if (w) then (idle) -> s0;

else (a1) -> s1;
@s1 (a2) -> s0;

}

Page 6

11

GEZEL: Conditions must be completeGEZEL: Conditions must be complete

s0

s1a2

!w/a1

w/_
s0

s1a2

!w/a1

OK

s0

s1

!w/a1

• For any source state si, exactly 1 state transition needs to be enabled

not OK

s0 can have two enabled
state transitions

not OK

s1 has never
an enabled transition

12

Disadvantages of Single FSMDisadvantages of Single FSM

• Only in one state at a time
• State explosion in complex systems
• Need for:

– Behavioral hierarchy (state in state in state...)
– Concurrency of states (prevents explosion)
– Synchronization (shared memory, events, status)
– Communication (shared memory(semaphores))
– Exceptions (preemption,abortion, history=interrupt)
– Programming constructs (state=sequential program execution)
– Indeterminism (arbitrary choice)

• Leads to “extended state machine” concept
• Historical paper: “Statecharts: a visual formalism for complex

systems”, Science of Computer programming Vol 8, 1987, pp. 231-
275

• Used in complex software programs

Page 7

13

State ChartsState Charts

• State Charts is a visual programming language for
control systems.

• commercial tools such as STATEMATE (I-Logix),
ARGOS (Inria-Sofia Antipolis), SPECC (Gajski),
STATEFLOW (Matlab).

• The basic concepts in the next slides are using
syntax of STATEFLOW.

• Used to illustrate the concepts visually.

14

Goal State chartsGoal State charts

• Cluster states or super states
– “In all airborne states, when yellow handle is pulled, eject chair

• Add independency or orthogonality
– “gearbox change of state is independent of braking system

• Allow “general” transitions
– ‘when selection button is pressed enter selected mode

• Capture refinement
– “display mode consists of time-display, date-display and stop-

watch display.

• All of this visually represented
• Statecharts = state-transition-diagrams + depth +

orthogonality + broadcast-communication

Page 8

15

Behavioral HierarchyBehavioral Hierarchy

e

e
e

Superstate S

default transition

a

b

a

b

In a OR b

S

alfa alfa

Parent S, activity
child FSM

16

Zoom In Zoom In -- Zoom OutZoom Out

a

b

SS

alfa

e

a

b

Zoom Out
Zoom In

Page 9

17

State HierarchyState Hierarchy

/Car_done
/Car_done.Car_made
/Car_done.Car_shipped
/Car_done.Car_made.Parts_assembled
/Car_done.Car_made.Painted

completion

Chart=root /

Car_done

Car_Made Car_Shipped

Assembled Painted

Parents
Children

Low

High

18

GEZEL: Nested ConditionsGEZEL: Nested Conditions

s0

s1

(!w&r)/_

threestate

w/_

s2

(!w&!r)/_

• State transition condition: w and r
• Three possible transitions from s0:

if (w) then goto s0
else if (r) then goto s1

else goto s2
• w has higher priority then r

fsm threestate {
initial s0;
state s1, s2;
@s0 if (w) then (idle) -> s0;

else if (r) then (idle) -> s1;
else (idle) -> s2;

@s1 (idle) -> s1;
@s2 (idle) -> s2;

}

Page 10

19

GEZEL: (Un)Nested ConditionsGEZEL: (Un)Nested Conditions

s0

s1

(!w&r)/_

threestate

w/_

s2

(!w&!r)/_

fsm threestate {
initial s0;
state s1, s2;
@s0 if (w) then (idle) -> s0;

else if (~w&r) then (idle)->s1;
else (idle) -> s2;

@s1 (idle) -> s1;
@s2 (idle) -> s2;

}

• Explicit priority

20

ConcurrencyConcurrency

a1
a2

a3b1

b2

b3=

Product Machine
#States = #A*#B

a

b

1

2

3

A B

S

S: superstate, S active-> S.A, S.B BOTH active
A and B entered concurrently-> S.A.a,S.B.1
Prevents state explosion

Page 11

21

ConcurrencyConcurrency

s0

s1a2

a1

twostate1

s3

s4a4

a3

twostate2

s0s3

s1s4a2a4

a1a3

productstate

X =

• Product state machine:
state space is obtained as the product of composing state machines

s0s4

s1s3

…

[all combinations covered?]

22

ConcurrencyConcurrency

• Product state machine may explode in complexity
(M-state combined with N-state can lead to M.N states)

• State explosion prevents modeling of many concurrency problems
as a combined state machine

• Concurrency modeling - express unrelated state machines separately

s0

s1

!w/_

twostate

w/_
s2

s3

!v/_

twostate

v/_
s0s2

s1s2

fourstate

s0s3

s1s3

(some transitions skipped)

v&w/_
v&!w/_ !v&!w/_

!v&w/_

=X

Page 12

23

FSMDFSMD

FSMD = (I, O, Q, M, N, V)
With I = input set
O= output set
Q = state set
V = variable set (from data path)
M = set of functions QxIxV -> Q
N = set of functions QxIxV -> O

24

FiniteFinite--state machine with datapath state machine with datapath
model (FSMD)model (FSMD)

FSMD extends FSM: complex data types and variables for storing data
– FSMs use only Boolean data types and operations, no variables

FSMD: 7-tuple <S, I , O, V, F, H, s0>
– S is a set of states {s0, s1, …, sl}
– I is a set of inputs {i0, i1, …, im}
– O is a set of outputs {o0, o1, …, on}
– V is a set of variables {v0, v1, …, vn}
– F is a next-state function (S x I x V → S)
– H is an action function (S → O + V)
– s0 is an initial state

I,O,V may represent complex data types (i.e., integers, floating point, etc.)
F,H may include arithmetic operations
H is an action function, not just an output function

– Describes variable updates as well as outputs

Complete system state now consists of current state, si, and values of all
variables

Page 13

25

GEZEL: Finite State Machine + GEZEL: Finite State Machine + DatapathDatapath

s0

s1

• datapath implements actions a1, a2

a2

a1 dp datapath {
reg z : ns(20);
sfg a1 {z = z + 1;}
sfg a2 {z = z << 1;}

}

fsm twostate(datapath) {
initial s0;
state s1;
@s0 (a1) -> s1;
@s1 (a2) -> s0;

}

twostate

datapath

a1: z = z + 1
a2: z = z * 2

z

26

GEZEL: GEZEL: DatapathDatapath conditionsconditions

s0

s1a2

!(z>10)/a1

twostate
(z>10)/clr

datapath

a1: z = z + 1
a2: z = z * 2

z
clr: z = 0

• Datapath implements state transitions
conditions
• State transition conditions are always
directly dependent on registers

dp datapath {
reg z : ns(20);
sfg a1 {z = z + 1;}
sfg a2 {z = z << 1;}
sfg clr {z = 0;}

}

fsm twostate(datapath) {
initial s0;
state s1;
@s0 if (z>10) then (clr) -> s0;

else (a1) -> s1;
@s1 (a2) -> s0;

}

Page 14

27

Ones counter FSMD in GEZELOnes counter FSMD in GEZEL

c

br rstr

s0

s1

flags ins

b rst o
dp ones(in b, rst : ns(1); out o : ns(8)) {

reg c : ns(8);
reg br, rstr : ns(1);
sfg reset { c = 0; o = 0; br = b;

rstr = 0;}
sfg inc { c = c + 1; o = c;

br = b; rstr = rst; }
sfg hold { br = b; rstr = rst;

o = c;}
}
fsm ctl_ones(ones) {

initial s0;
state s1;
@s0 (reset) -> s1;
@s1 if (rstr) then (reset) -> s1;

else if (br) then (inc) -> s1;
else (hold) -> s1;

}

28

Ones counter FSMD in GEZELOnes counter FSMD in GEZEL

c

br rstr

s0

s1

flags ins

b rst o
dp ones(in b, rst : ns(1); out o : ns(8)) {

reg c : ns(8);
reg br, rstr : ns(1);
sfg reset { c = 0; o = 0; br = b;

rstr = 0;}
sfg inc { c = c + 1; o = c;

br = b; rstr = rst; }
sfg hold { br = b; rstr = rst;

o = c;}
}
fsm ctl_ones(ones) {

initial s0;
state s1;
@s0 (reset) -> s1;
@s1 if (rstr) then (reset) -> s1;

else if (br) then (inc) -> s1;
else (hold) -> s1;

}

Page 15

29

Ones counter FSMD in GEZELOnes counter FSMD in GEZEL

c

br rstr

s0

s1

flags ins

b rst o
dp ones(in b, rst : ns(1); out o : ns(8)) {

reg c : ns(8);
reg br, rstr : ns(1);
sfg reset { c = 0; o = 0; br = b;

rstr = 0;}
sfg inc { c = c + 1; o = c;

br = b; rstr = rst; }
sfg hold { br = b; rstr = rst;

o = c;}
}
fsm ctl_ones(ones) {

initial s0;
state s1;
@s0 (reset) -> s1;
@s1 if (rstr) then (reset) -> s1;

else if (br) then (inc) -> s1;
else (hold) -> s1;

}

30

dp ones(in b, rst : ns(1); out o : ns(8)) {
reg c : ns(8);
reg br, rstr : ns(1);
sfg reset { c = 0; o = 0; br = b;

rstr = 0;}
sfg inc { c = c + 1; o = c;

br = b; rstr = rst; }
sfg hold { br = b; rstr = rst;

o = c;}
}
fsm ctl_ones(ones) {

initial s0;
state s1;
@s0 (reset) -> s1;
@s1 if (rstr) then (reset) -> s1;

else if (br) then (inc) -> s1;
else (hold) -> s1;

}

Ones counter FSMD in GEZELOnes counter FSMD in GEZEL

c

br rstr

s0

s1

flags ins

b rst o

Page 16

31

c

br rstr

s0

s1

flags ins

Ones counter FSMD in GEZELOnes counter FSMD in GEZEL
b rst o

dp ones(in b, rst : ns(1); out o : ns(8)) {
reg c : ns(8);
reg br, rstr : ns(1);
sfg reset { c = 0; o = 0; br = b;

rstr = 0;}
sfg inc { c = c + 1; o = c;

br = b; rstr = rst; }
sfg hold { br = b; rstr = rst;

o = c;}
}
fsm ctl_ones(ones) {

initial s0;
state s1;
@s0 (reset) -> s1;
@s1 if (rstr) then (reset) -> s1;

else if (br) then (inc) -> s1;
else (hold) -> s1;

}

32

c

br rstr

s0

s1

flags ins

Ones counter FSMD in GEZELOnes counter FSMD in GEZEL
b rst o

dp ones(in b, rst : ns(1); out o : ns(8)) {
reg c : ns(8);
reg br, rstr : ns(1);
sfg reset { c = 0; o = 0; br = b;

rstr = 0;}
sfg inc { c = c + 1; o = c;

br = b; rstr = rst; }
sfg hold { br = b; rstr = rst;

o = c;}
}
fsm ctl_ones(ones) {

initial s0;
state s1;
@s0 (reset) -> s1;
@s1 if (rstr) then (reset) -> s1;

else if (br) then (inc) -> s1;
else (hold) -> s1;

}

Page 17

33

c

br rstr

s0

s1

flags ins

Ones counter FSMD in GEZELOnes counter FSMD in GEZEL
b rst o

dp ones(in b, rst : ns(1); out o : ns(8)) {
reg c : ns(8);
reg br, rstr : ns(1);
sfg reset { c = 0; o = 0; br = b;

rstr = 0;}
sfg inc { c = c + 1; o = c;

br = b; rstr = rst; }
sfg hold { br = b; rstr = rst;

o = c;}
}
fsm ctl_ones(ones) {

initial s0;
state s1;
@s0 (reset) -> s1;
@s1 if (rstr) then (reset) -> s1;

else if (br) then (inc) -> s1;
else (hold) -> s1;

}

34

CommunicationCommunication

s0

!w/a3

onestate

s1

s2a2

a1

twostate

w/a4

w

a1: w = 0
a2: w = 1

a3 executes with a1
a4 executes with a2

• FSM(D) can exchange events
• Communication is global and instantaneous
(nice for math and proofs, but not physically realizable!)

Page 18

35

GEZEL: Physical CommunicationGEZEL: Physical Communication

s0

!w/a3s1

s2a2

a1

w/a4

e

wa1: e = 1
a2: e = 0

dp datapath(in e : ns(1)) {
reg w : ns(20);
always {w = e;}
sfg a3 {...}
sfg a4 {...}

}
fsm onestate(datapath) {

initial s0;
@s0 if (w) then (a3) -> s0;

else (a4) -> s0;
}

• Datapaths have ports to write & read events
• Data is captured in register and used in state transition
condition. This causes a cycle delay; physical
communication always has delay

36

SynchronizationSynchronization

sender receiver
request

acknowledge

data

request

acknowledge

synchronization points
(to exchange data)

Page 19

37

Synchronized CommunicationSynchronized Communication

Two-phase
handshake

Single-phase
handshake

Perfect
synchrony

blocking-read
blocking-write

nonblocking-read
blocking-write

Sender/Receiver
synchronization

Sender/Receiver
communication

nonblocking-read
nonblocking-write

Requirements for sender/receiver synchronization
depending on various communication primitives

blocking-read
nonblocking-writeor

38

TwoTwo--phase handshake phase handshake -- sendersender
dp sender(out req : ns(1);

in ack : ns(1);
out d : ns(8)) {

reg rack : ns(1);
always {rack = ack;}
sfg reqhi {req = 1;}
sfg reqlo {req = 0;}
sfg send {d = 10;}
sfg idle {d = anything;}

}
fsm onestate(datapath) {

initial s0, s1;
@s0 (reqhi) -> s1;
@s1 if (rack) then (send, reqlo) -> s2;

else (reqhi, idle) -> s1;
@s2 if (!rack) then (reqhi, idle) -> s1;

else (reqlo, idle) -> s2;
}

synchronization
points

Page 20

39

Slow sender, fast receiverSlow sender, fast receiver

sender receiver
request

data

request

synchronization
points

• A similar case also exists with a fast sender, slow receiver
(only acknowledge signal)

40

SingleSingle--side handshake side handshake -- slow senderslow sender

dp sender(out req : ns(1);
out d : ns(8)) {

sfg reqhi {req = 1;}
sfg reqlo {req = 0;}
sfg send {d = 10;}
sfg idle {d = anything;}

}
fsm onestate(datapath) {

initial s0, s1;
@s0 (reqhi, send) -> s1;
@s1 (reqlo, idle) -> s0;

}

Page 21

41

From FSM to gatesFrom FSM to gates

fsm ctl_ones(ones) {

initial s0;

state s1;

@s0 (reset) -> s1;
@s1 if (rstr) then (reset) ->

s1;

else if (br) then (inc) -
> s1;

else (hold) -> s1;

}

2 states = 1 bit
2 inputs = 2 bits
3 instructions = 2 bits

101100
011110

0011X1

0010XX

out[0][1]nscsbrrstr

s0

s1

42

FSM to GatesFSM to Gates

Fixed program
•FSM to standard cells: perfect fit
•FSM to PLA (Programmable Logic Array): perfect fit

With programmability:
•Micro-programming
•Program counter
•Control unit of processor

layout

Page 22

43

From FSM to gatesFrom FSM to gates

Inputs States

Implement with:
-PLA
- Logic synthesis

44

A Historical Perspective: the PLAA Historical Perspective: the PLA

x0 x1 x2

AND
plane

x0x1

x2

Product terms

OR
plane

f0 f1

[Rabaey 2nd edition]

Page 23

45

TwoTwo--Level LogicLevel Logic

Inverting format (NOR-
NOR) more effective

Every logic function can be
expressed in sum-of-products
format (AND-OR)

minterm

[Rabaey 2nd edition]

46

PLA Layout PLA Layout –– Exploiting RegularityExploiting Regularity

f0 f1x0 x0 x1 x1 x2 x2
Pull-up devices Pull-up devices

VDD GNDφ
And-Plane Or-Plane

[Rabaey 2nd edition]

Page 24

47

Other alternativesOther alternatives

When program large & complex:
• Critical path & pipelining
• Micro programming
• Program Counter
• Control unit of processor

48

ConclusionConclusion

• Synchronous Data flow for stream processing
• Control flow for condition handling, events, special

cases
• In reality: mixture of the two, always going to be

some part not modeled easily.

