
Page 1

1

Lecture 3:Lecture 3:
System specifications and System specifications and

models of computationmodels of computation
I. Verbauwhede,

2009
KULeuven

2

H05H4, H05E7: Skiing down a mountainH05H4, H05E7: Skiing down a mountain

Specification

ASIC Special
Purpose

Retargetable
coprocessor

DSP
processor

DSP-
RISC RISC

Algorithm Transformations

Memory Transformations
and Optimizations

Floating-point to Fixed-point

SPW, Matlab, C++

pipelining, unrolling

loop merging, compaction

40 bit accumulator

Page 2

3

OverviewOverview

Lecture 1: what is a system-on-chip
Lecture 5: fixed point refinement
Lecture 2: terminology for the different steps
Lecture 3 – today: models of computation

– Synchronous data flow graphs
– Control flow models

4

Last lecture: Digital Abstraction LevelsLast lecture: Digital Abstraction Levels
System:

– From requirements to executable behaviour,
– ADT, Concurrent Communicating Processes, Events, CT

Algorithmic:
– Refinement of behaviour to Hw-Sw architecture
– DT, ADT to bitvector, int; primitive operations (+,-,*,>>,<<…)

Register Transfer:
– Clocked system: clock tick
– Bitvectors; RT-operations->RT-operators, FSM’s, Store, Interfaces

Logic:
– Bit, Boolean, Std_Logic
– Int Gate Delay, Boolean fnct, FSM, gate, ff, switch

Transistor:
– v(t), i(t), ODE’s, Netw, Eq. R.L,C,E,I,M…

Polygon

Software

C, C++

µP,µC
DSP

Mem

Partly

Coproc

Cl

R>>
*

+-
+Tcl

+ td

F

+
-

ADT = Abstract Data Type, DT = Discrete Time

Page 3

5

Last lecture: Global SoC designLast lecture: Global SoC design--flowflow

Scheduling

RT-synthesis

IP core Generation

Behaviour Structure

Physical

RT-Module (*,+..)

FSMD
Chip (floorplan)

Chip+environment

Std. Cell

Algorithm

Informal Specs

CCM

Chip architecture
Logic Synthesiscircuit

logic

System

Algorithm
R/T

Top Down Design

Bottom-Up Implementation

6

System Specs and Models of ComputationSystem Specs and Models of Computation

Outline:
• What are specifications?
• How to specify TIME?
• Two most important models of computation:

– Synchronous data flow graphs
– Control flow models

Page 4

7

What are specifications?What are specifications?

From informal specs to an ‘executable’ form of spec:
1. Functional specification (what?)

= relation between inputs, outputs (and states)
= formal mathematical framework to describe behavior

2. A set of properties that must be satisfied: assertions
= relation that must be satisfied if the functional behavior is correct
e.g. deterministic behavior, bounded memory

3. A set of performance indexes (per abstraction layer) :
Most important ones: Power, Area, Timing, Price,
Estimators: E(P), E(A), E(T), E(GBW)…

4. A set of constraints: E(X) < C

E: Estimator

F
x y

8

Specs and Specs and OccamOccam’’ss principleprinciple

• Specs needed at all abstraction layers (AL)
• Design is top-down refinement of specifications
• Requires models of reality but not more...

No more things should be presumed to exist than are
absolutely necessary.

“Entia non sunt multiplicanda praeter necessitatem”

W. Occam 1280-1349

Page 5

9

Model of computationModel of computation

Model = operates on the signal and time representation
at each abstraction level!
= not implementation but abstract functionality such
that:

1. As little as possible restriction on implementation
(keep freedom)

2. Be simple and formal enough to allow good validation
at given level of abstraction

3. Be executable

10

Executable and formal models: why?Executable and formal models: why?

Validation at all levels:

- By construction
– inherent to model (property guaranteed)

- By formal verification
– proof of properties possible as property of model

- By simulation
– check expected behaviour for all (?) inputs
– checking of assertions

It is better to be higher in this list…hence understand
computational models and their properties.

Many different models co-exist in a given system...

Page 6

11

System Specs and Models of ComputationSystem Specs and Models of Computation

Outline:
• What are specifications?
• How to specify TIME?
• Two most important models of computation:

– Synchronous data flow graphs
– Control flow models

12

Many representations of time, Many representations of time,
values and signals = {(v,t)}values and signals = {(v,t)}

After Ed Lee, UCB

Page 7

13

Time RepresentationsTime Representations

• Tag t is abstraction of time (temporal order)
- Absolute time = global ordering=overspecification
- Cumbersome and harmful because reduces degree of freedom
- Order in t is order in events (t<t’ <=> e<e’)

• 3 representations:

-Discrete time
T is totally ordered discrete set

1)'()'(' that such T in =<⊕<⇒≠< tttttt

T
v

t

-Precedences
T is partially ordered discrete set

T

ℜ=T
-Absolute time

v

t(T totally ordered closed connected set)

14

Functional Functional BehaviourBehaviour

• Timed Models of Computation = total order
– Continuous time-
– Discrete event-
– Cycle accurate
– Instruction accurate
– Transaction accurate
– …

• Untimed Models of Computation = partial order
– Sequential Processes with Rendez-Vous
– Kahn Networks
– Data-Flow networks
– …

Page 8

15

Discrete Event SystemDiscrete Event System

Let Q be a timed system and s∈Q, let T(s) be set of
tags appearing in any signal s in s.

• Q is a discrete event system if, for each s∈Q there
exists an order-preserving bijection from some
subset of the natural numbers to T(s)

Any pair of events in a signal has a
finite number of intervening events

There may exist concurrent events (one tag)

There is a first event

Events can be “indexed” by natural numbers

s1

s2
1

2

3

0

4

5

6...

1 2 3 4 5 6 …

16

Discrete event simulationDiscrete event simulation
• Based on event queue Q. Presupposes delta

causality to guarantee convergence in simulation.

{ Put input events ei in appropriate slots of Q;
While Q not empty
{ At next non empty slot t in Q:

for all ei ∈ t:
{Compute output events eo from ei ;
Remove ei from slot t ;
Project eo

* on Q at t+Δoi slot (Δoi: delay of eo w.r.t ei);}
}

} Simulation mechanism of VHDL, MATLAB-STATEFLOW
* eo’s are ei’s of fan-out processes

Sorting!!!

Page 9

17

Queue = Linked ListQueue = Linked List

11

v1 v2

16 21 34 45 50 ∅

v3 ∅

now

Delay
=25

36

Future event: insertion
Zero Delay : 2 delta lists

δ

δ’

v4 ∅

zerodelay

18

Synchronous ModelsSynchronous Models

• Two events are synchronous if they have the same
tag.

• Two signals are synchronous if all events in one
signal are synchronous with an event in the other
signal and vice versa.

• A system is synchronous if every signal in the
system is synchronous with every other signal in the
system.

• A discrete-time system is a synchronous discrete-
event system.

Page 10

19

Clocked discreteClocked discrete--time Systemstime Systems

All tags t in T are determined by a set of clock ticks that are
globally available. All signals in the system are considered as
broadcasted events computed in zero delay processes.
Non-changing signals are considered as empty events ⊥
Input signals are synchronous to clock signal.

Delay-free loops are not allowed unless they contain master-slave
memories synchronous to the clock ticks.

F FSM G

clock

⊥ ⊥
input

ms
memory F,FSM,G

0 delay

20

Clocked DiscreteClocked Discrete--Time SimulationTime Simulation

• Also called cycle based simulation
• Does not require sorting: faster than event-driven

simulation (if not too many empty signals)
• Computation of acyclic process graph by topological

sort at compile time (code generation).
• Ideally suited for RT-level simulation, instruction set

simulators, sampled data systems (clock period is
fastest rate stream period).

• Global instantaneous broadcasting communication
• Focus on functionality. Effect of computation delay

is a timing verification problem at lower AL.
• Inefficient when high degree of inactivity (then DE)

Page 11

21

UntimedUntimed Models of ComputationModels of Computation

• Model Q in which T(s) with s ∈ Q is a partially ordered
set. Also called asynchronous system

• Partial order creates freedom of implementation
• Important concept for distributed state based systems

that progress at their own pace except at
synchronisation points or systems that progress
through availability of data.

– Sequential processes with rendez-vous
– Kahn Process and Data Flow networks

22

Ex1: Sequential processes with Ex1: Sequential processes with
RendezRendez--VousVous

Sequential process*: totally ordered (infinite1) sequence of states si
at which instructions read, operate and write to a store m (Turing machine)

P1 P2

F:state->state

sim
T1: totally ordered
T2: totally ordered

T=T1∪ T2:
partially ordered

t1(s1)=t2(s2)=tct

t’

t < tc
t’< tc
t < t’ or t’< t

• Channel : point-to-point
• Blocking-send /Blocking-receive (no buffer required)

cut2

cut3

s1

s2

R-Vous
Channel C

cut1

*thread

Page 12

23

Ex 2: DataEx 2: Data--Flow networksFlow networks
• Special case of Kahn Networks:
• Actors are fired when a prescribed number of tokens

are available at the inputs. The actor consumes the
tokens and produces a prescribed number of tokens
at the output. Firing rule (FR).

• Depending on the FR such networks have very
interesting properties that make DF models the key
to describe DSP systems.

FR

Actor (C…)

2

1

3 1 5

24

System Specs and Models of ComputationSystem Specs and Models of Computation

Outline:
• What are specifications?
• How to specify TIME?
• Many models of computation
• Two most important models of computation:

– Synchronous data flow graphs
– Control flow models

Page 13

25

Data flowData flow

Data flow representation of an algorithm:
• is a directed graph
• nodes are computations (actors)
• arcs (or edges) are paths over which the data (“samples”) travels.

+

x

x

D

D

DF shows which computations to perform, not sequence.
Sequence is only determined by data dependencies.
Hence exposes concurrency.

26

Data flow (cont.)Data flow (cont.)
Assume infinite stream of input samples.
So nodes perform computations an infinite times.

Node will “fire” (start its computation) when inputs are available.
Node with no inputs can fire anytime.

Numbers indicate the number of samples (tokens) produced, consumed
by one firing.

Nodes will fire when input data is available, called “data-driven”.
Hence it exposes concurrency.
Nodes must be free of “side effects”: e.g. a write to a memory location
followed by a read, only allowed if there is an arc between them

+

x

x

D

D

1 1

1 1

1

1 1

1

Page 14

27

Data flow (cont.)Data flow (cont.)

True data flow: overhead for checking the availability of input tokens
is too large.
BUT, synchronous data flow: the number of tokens produced/consumed
is know beforehand (a priori)!
Hence, the scheduling can done a priori, at compile time. Thus there is NO
runtime overhead!

For signal processing applications: the number of tokens produced
& consumed is independent of the data and known beforehand
(= relative sample rates).

+

x

x

D

D

1 1

1 1

1

1 1

1

28

Synchronous Data Flow Synchronous Data Flow -- definitiondefinition

Synchronous data flow graph (SDF) is a network of synchronous
nodes (also called blocks).
A node is a function that is invoked whenever there are enough
inputs available. The inputs are consumed.
For a synchronous node, the consumptions and productions are
known a priori.

+

x

x

D

D

1 1

1 1

1

1 1

1

Homogeneous SDF graph: when only “1”’s on the graph.

Page 15

29

Delay Delay -- DD

Delay of signal processing
Unit delay on arc between A and B, means

n-th sample consumed by B, is (n-1)th sample
produced by A.
– Initialized by d zero samples

DA B

30

A synchronous compilerA synchronous compiler

Translation from SDF graph to a sequential program
on a processor

Two tasks:
– Allocation of shared memory between blocks or setting up

communication between blocks
– Scheduling blocks onto processors such that all input data is

available when block is invoked

Goal: create Periodic Admissible Parallel Schedule
(PAPS)

Page 16

31

Precedence graph Precedence graph -- ScheduleSchedule

Precedence graph indicates the sequence of operations:

+

x

x

D

D

1 1

1 1

1

1 1

1

Schedule determines when and where (which processor or
which data path unit) the node fires.

x
A

B

C
A

x
B

+

C

A B C
Valid
schedules: Invalid

schedule:

B A C

C A B

32

+

x

x

D

D

1 1

1 1

1

1 1

1

A

B

Blocked ScheduleBlocked Schedule
Blocked: one cycle terminates before next one starts

C
+

x

x

11

11

1

11

1

F

E

G

A C G

B F

E

3 processors/units: valid blocked schedule With pipeline (not blocked):

A C

B F

G E

P1

P2

P3

P1

P2

P3

Static schedule

Page 17

33

Small Small –– large grainlarge grain

Iteration period = length of one cycle = 1/throughput

Goal: minimize iteration period

Iteration period bound = minimum achievable (assuming pipelining)
= bound by total number of operations in loop divided by number of

delays in the loop)

Atomic SDF graph, when nodes are primitive operations
Large grain SDF graph, when nodes are larger functions:

Example: IIR filter = small grain
JPEG = large grain

34

SDF graph implementationSDF graph implementation

Implementation requires:
• buffering of the data samples passing between nodes
• schedule nodes when inputs are available

Dynamic implementation (= runtime) requires
• runtime scheduler checks when inputs are available and
schedules nodes when a processor is free.

• usually expensive because overhead

Contribution of Lee-87:
• SDF graphs can be scheduled at compile time
• no overhead

Compiler will:
• determine the execution order of the nodes on
one or multiple processors or data path units

• determine communication buffers between nodes.

Page 18

35

Periodic schedule for SDF graphPeriodic schedule for SDF graph
Assumptions:
• infinite stream of input data (the case for signal processing applications)
• periodic schedule: same schedule applied repetitively on input stream
Goal:
• check if schedule can be found:
• Periodic admissible sequential schedule (PASS)
for a single processor or data path unit

• Periodic admissible parallel schedule (PAPS)
for multiple processors

n1

n3

n2
1

2

1

1

1 1

n1

n3

n2
1

2

1

2

1 1

Rate inconsistency Consistent solution

n2 n3 n3n1

PASS

36

Formal approachFormal approach

Construct topology matrix
• each node is a column
• each arc is a row
• entry (i,j) = data produced on node i by arc j.
• consumption is negative entry

n1

n3

n2
1

2

1

2

1 1

Self loop entry?

e2

e1

e3
1 -1 0
2 0 -1
0 2 -1

n1 n2 n3
e1
e2
e3

Γ =

Page 19

37

FIFO queuesFIFO queues
b(n) = size of queues on each arc

1 0 0
v(n) = 0 or 1 or 0 indicates firing node

0 0 1
b(n+1) = b(n) + Γ v(n)

n1

n3

n2
1

2

1

2

1 1

e2

e1

e3

1 -1 0
2 0 -1
0 2 -1

n1 n2 n3
e1
e2
e3

0 1
b(0) = 0 , b(1) = 2

0 0

38

FIFO queues & delaysFIFO queues & delays
Delays are handled by initializing b(0) with the delay values:

n1

n3

n2
1

1
1

1
1

b(0) = 2
D

2D

So at start-up:
• can fire n3 two times before firing n1 again

So, every directed loop must have at least one delay to be able to start

Page 20

39

Identifying inconsistent sample ratesIdentifying inconsistent sample rates
Necessary condition for the existence of periodic schedule with
bounded memory

Rank of Γ is s-1 (s is number of nodes)

n1

n3

n2
1

2

1

1

1 1

1 -1 0
2 0 -1
0 1 -1

n1 n2 n3
e1
e2
e3

n1

n3

n2
1

2

1

2

1 1

1 -1 0
2 0 -1
0 2 -1

n1 n2 n3
e1
e2
e3

rank? rank?

40

Relative firing frequencyRelative firing frequency

Topology matrix with the correct rank, has a strictly positive (element-wise)
integer vector q in its right nulspace:

Thus: Γq = 0

n1

n3

n2
1

2

1

2

1 1

1 -1 0
2 0 -1
0 2 -1

n1 n2 n3
e1
e2
e3

1
rank = 2, q = 1

2

q determines number of times each node is invoked!

Page 21

41

Insufficient delaysInsufficient delays

Rank s-1 is a necessary but not a sufficient condition:

n1 n2
1

1

1

1

n1 n2
1

2

1

2

1 -1
-1 1

1
1

0
0

=

42

Scheduling for single processorScheduling for single processor

Given:
• positive integer vector q, such that Γq = 0
• given b(0)
The i-th node is “runnable” if
• it has not been run qi times
• it will not cause the buffer size to become negative

Class “S” (sequential) algorithm creates a static schedule:
• is an algorithm that schedules a node if it is runnable
• it updates b(n)
• it stops when no more nodes are runnable.

If the class S algorithm terminates before it has scheduled
each node the number of times specified in the q vector,
then it is said to be deadlocked.

Page 22

43

Example Class S algorithmExample Class S algorithm
• Solve for smallest positive integer q
• Form a list of all nodes in the system
• for each node, schedule if runnable, try each node once
• if each node has been scheduled qi times, STOP.
• If no node can be scheduled, indicate deadlock
• else continue with the next node.

(Complexity: traverse the graph once, visiting each edge once).
Optimization: minimize buffer (=memory) requirements

n1

n3

n2
1

2

1

2

1 1

Schedule:
1 - 2 - 3 -3 is PASS
1 - 2 - 3 is not PASS
2 - 1 - 3 -3 is not PASS

44

Schedule for parallel processorsSchedule for parallel processors

Assumptions:
• homogeneous processors, no overhead in communication

• if PASS exists, then also PAPS
(because we could run all nodes on one processor)

A blocked periodic admissible parallel schedule is
• set of lists {Xi; i = 1, ... M}
• M is the number of processors
• Xi = periodic schedule for processor i

p is smallest positive integer vector, such that Γp = 0.
Then a cycle of schedule invokes every node

q = Jp times.
J is called the blocking factor (can be different from 1).

Page 23

45

Precedence graphPrecedence graph

n1

n2

n3
1

1

2

1

2 1

D

2D

PASS: ?

1 -2 0
0 1 -1
-1 0 2

n1 n2 n3
e1
e2
e3

e1
e2

e3

Γp = 0.

2
rank = 2, p = 1

1

Precedence graph for unity blocking factor:

n11

n12

n2

n3

46

Schedule on two processors, J=1Schedule on two processors, J=1
Assumptions:
• node 1 takes 1 time unit, node 2 takes 2, node 3 takes 3

• X1 = {3}
• X2 = {1, 1, 2}

n11

n12

n2

n3

processor1 3

1 1 2processor2

Time

Iteration period = 4

Page 24

47

Schedule on two processors, J=2Schedule on two processors, J=2
Assumptions:
• node 1 takes 1 time unit, node 2 takes 2, node 3 takes 3
• nodes have self loops (so nodes can not overlap with themselves)

n11

n12

processor1 3

1 1 2processor2

Time

n13

n14

n21 n22

n32

n31

1 1 2

3

• X1 = {3, 1, 1, 2}
• X2 = {1, 1, 2, 3}

Iteration period is 7/2 = 3.5

48

Why are we doing this?Why are we doing this?

The principle of synchronous data flow is used in many
simulators. Based on this, multi-dimensional data flow
representations have been developed.

Reality is always more complicated….
Issues in practice:
• choose schedule to minimize memory requirements.
• include non data flow nodes

• if-then-else
• data dependent calculations

Page 25

49

ConclusionConclusion

Models of computation
• Associated with levels of abstraction
• Allow reasoning without details
• Need to know the boundaries (where applicable,

where not)
• Tagged Signal Framework is a classification system
We will use a lot:
• Data flow representation
• Control flow

