
Page 1

H05H4- Lecture 2 – Methodology & Terminology

1

H05H4, H05E7, Chapter IIH05H4, H05E7, Chapter II
Ontw erpOntw erp van microvan micro-- el ektronisch eel ektronisch e

systemensystemen
Design of microDesign of micro-- el ectronic systemsel ectronic systems

Ingrid Verbauwhede,
Acknowledgements: H. De Man

2009
KULeuven

2

Summary Lecture 1Summary Lecture 1

• Introduction: Post PC-area
• what is a Integrated System-on-Chip?

– Very heterogeneous device
– Many IP modules
– Much more than a general purpose processor

• What is system-on-chip design?
– Vertical refinement of design steps
– Horizontal design space exploration
– Skiing down a mountain

• How do you describe hardware?
– GEZEL hardware description language

Page 2

H05H4- Lecture 2 – Methodology & Terminology

3

Skiing down a mountainSkiing down a mountain

Specification

ASIC Special
Purpose

Retargetable
coprocessor

DSP
processor

DSP-
RISC RISC

Algorithm Transformations

Memory Transformations
and Optimizations

Floating-point to Fixed-point

SPW, Matlab, C++

pipelining, unrolling

loop merging, compaction

40 bit accumulator

4

Today: TerminologyToday: Terminology

Skiing down = “methodology”
When skiing down:
• Terminology
• Levels of abstraction
• Y-chart of Gajski-Kuhn
• Models of computation

Reading:
• Chapter II of Course notes: Methodology &

Terminology

Page 3

H05H4- Lecture 2 – Methodology & Terminology

5

II. Methodology and TerminologyII. Methodology and Terminology

Think and plan before you act!

• Methodology is a set of practices that, when applied
in the right sequence, allow engineers to master the
design process

• Master: designing the right system correctly within a
given cost and time budget

• Terminology: tools and engineer’s talk…Bable was a
disaster...

6

OutlineOutline

• Design Space and Design Flow

• Hierarchy and Abstraction Levels

• Design Flow for SoC’s

• CAD tools

• Design Methodology

Page 4

H05H4- Lecture 2 – Methodology & Terminology

7

Design Space and Design FlowDesign Space and Design Flow

Design: translate abstract idea into interrelation of
elements that, by exchanging info amongst themselves,
achieve a useful interaction with the environment

Design flow: systematic sequence of well defined design
activities that, in a time and cost effective way, leads to a
production plan

A design flow traverses a design space based on 3
system representation axes

8

Three Design RepresentationsThree Design Representations

The 3 axes:

• Behaviour (What?)

• Structure (How? = Composition of sub-behaviours)

• Physical Implementation (Production Plan, Geometry)

Page 5

H05H4- Lecture 2 – Methodology & Terminology

9

BehaviourBehaviour ((gedraggedrag))

E

P
S

p
Environment

B
….
z= a+b*fft(x);
if (z>a) then…
….

+ Constraints

T

E: entity
P: port,
S: signal
p: parameters, generics
B: behaviour
T: testbench

Signal: type, time representation, dimension
Port : “ “ “ + mode

Behaviour ::= relation between signals defining interaction with environment

First design task: translate requirements into formal behaviour
= concurrently executable Models of Computation (MoC)
Specs = behaviour + constraints + testbench

10

SignalsSignals

Signals are functions that map time into values

[X -> Y] = {f | domain(f) = X & range(f) = Y}
X = time domain
Y = some other physical value

Ex.: Sound signals
= waveform with time dimension
and voltage levels

time

Voltage

Page 6

H05H4- Lecture 2 – Methodology & Terminology

11

StructureStructure

Entity

Channel Structure

c1

c2

c

Component (Instantiation of C)

Results from refinement of behaviour in sub-behaviours of simpler nature…
A way to master complexity...

Schematics
Netlist (language)

12

Example: VHDL S tructural descriptionExample: VHDL S tructural description

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity SOMETHING is

 port (SEL, A, B: in STD_LOGIC;

 F : out STD_LOGIC);

end;

architecture STRUCTURAL of SOMETHING is

component INV

 port (A: in STD_LOGIC;

 F: out STD_LOGIC);

end component;

component AOI

 port (A, B, C, D: in STD_LOGIC;

 F : out STD_LOGIC);

end component;

signal SELB: STD_LOGIC;

begin

 G1: INV port map (SEL, SELB);

 G2: AOI port map (SEL, A, SELB, B, F);

end;

Entity

Structural architecture

Component declarations

Structure of entity

Internal Signal declaration

Gate level

Page 7

H05H4- Lecture 2 – Methodology & Terminology

13

An FSMD in GEZELAn FSMD in GEZEL
dp updown(out a : ns(4)) {
reg c : ns(4);
sfg inc { c = c + 1;

a = c; }
sfg dec { c = c – 1;

a = c; }
}

fsm ctl_updown(updown) {
initial s0;
state s1;
@s0 if (c < 10) then (inc) -> s0;

else (dec) -> s1;
@s1 if (c > 0) then (dec) -> s1;

else (inc) -> s0;
}

+1 -1

c

a

s0

s1

<10 >0

14

DatapathFSM

To compare: Equivalent To compare: Equivalent SystemCSystemC modelmodel
const int counter_do_io = 1;
const int counter_do_up = 2;
const int counter_do_dn = 4;
SC_MODULE(dp_counter) {
sc_in <bool> clk;
sc_in <sc_uint<3> > ins_counter;
sc_in <sc_uint<2> > ud;
sc_out<sc_uint<3> > a;
sc_out<sc_uint<2> > flags_counter;
sc_signal<sc_uint<3> > c, c_next;
sc_signal<sc_uint<2> > u, u_next;
sc_signal<sc_uint<3> > nc;
void eval_logic();
void update_regs();
SC_CTOR(dp_counter) {
SC_METHOD(eval_logic);
sensitive << c << nc << ud;
SC_METHOD(update_regs);
sensitive_pos(clk);
c = c_next = 0; u = u_next = 0;

}
};
void dp_counter::eval_logic() {
sc_uint<3> sfg = ins_counter.read();
if (sfg & counter_do_io) {
u_next = ud.read();
a.write(nc);
flags_counter.write(u);

}
if (sfg & counter_do_up) {
nc = c.read() + 1;
c_next = nc;

}
if (sfg & counter_do_dn) {
nc = c.read() - 1;
c_next = nc;

}
}
void dp_counter::update_regs() {
u = u_next;
c = c_next;

}

SC_MODULE(fsm_counter) {
sc_in <bool> clk;
sc_in <sc_uint<2> > flags_counter;
sc_out<sc_uint<3> > ins_counter;
sc_signal<int> state, state_next;
void eval_logic();
void update_regs();
SC_CTOR(fsm_counter) {
SC_METHOD(eval_logic);
sensitive << flags_counter << state;
SC_METHOD(update_regs);
sensitive_pos(clk);
state = state_next = 0;

}
};
void fsm_counter::eval_logic() {
sc_uint<3> flags = flags_counter.read();
switch(state) {
case 0:
if (flags[0]) {
state_next = 1;
ins_counter.write(c_do_dn | c_do_io);
} else {
state_next = 0;
ins_counter.write(c_do_up | c_do_io);
}
break;
case 1:
if (flags[1]) {
state_next = 0;
ins_counter.write(c_do_up | c_do_io);
} else {
state_next = 1;
ins_counter.write(c_do_dn | c_do_io);
}
break;
}

}
void fsm_counter::update_regs() {
state = state_next;

}

Page 8

H05H4- Lecture 2 – Methodology & Terminology

15

Physical Representation (Layout)Physical Representation (Layout)

Blueprint
Production Drawing
Precise geometric representation
Of component realisation
Interconnections
Materials
Layers

16

YY--Chart (Chart (GajskiGajski--Kuhn)Kuhn)

Logic

System
Algorithm

R/T

circuit

Behaviour Structure

Physical

Design Space: axis measures abstraction. High is less detailed
Levels of abstraction is circles
Design Flow is path in Y chart

Page 9

H05H4- Lecture 2 – Methodology & Terminology

17

Example of Design FlowExample of Design Flow

Logic

circuit

Behaviour Structure

Physical

x<= a when sel=‘1’ else b;

A

Logic class

Digital
Circuits

B
C

D

18

OutlineOutline

• Design Space and Design Flow

• Hierarchy and Abstraction Levels

• Design Flow for SoC’s

• CAD tools

• Design Methodology

Page 10

H05H4- Lecture 2 – Methodology & Terminology

19

Hierarchy and Abstraction LevelsHierarchy and Abstraction Levels

concept

abstract

concrete

product

Behaviour
Structure
Layout

Design is step by step decomposition of abstract behaviour into a managable
interaction of more and more subsystems (structure) at lower abstraction until a
level is reached where a physical realisation exists. This is followed by a bottom up
physical implementation

Abstr. Level

20

Abstraction levelsAbstraction levels

• Define steps to your goal. Decide what the
important issues are at a given step. Focus only on
these issues before proceeding.
• “A model must be as simple as possible, but not

simpler” (Dixit A. Einstein)

• Basis:
– Signal Types
– Time representation
– Behavioural Primitives
– Structural Primitives
– Design Activities

• Digital signals and components much easier to
abstract than analog!

Page 11

H05H4- Lecture 2 – Methodology & Terminology

21

Digital Abstraction LevelsDigital Abstraction Levels
System:

– From requirements to executable behaviour,
– ADT, Concurrent Communicating Processes, Events, CT

Algorithmic:
– Refinement of behaviour to Hw-Sw architecture
– DT, ADT to bitvector, int; primitive operations (+,-,*,>>,<<…)

Register Transfer:
– Clocked system: clock tick
– Bitvectors; RT-operations->RT-operators, FSM’s, Store, Interfaces

Logic:
– Bit, Boolean, Std_Logic
– Int Gate Delay, Boolean fnct, FSM, gate, ff, switch

Transistor:
– v(t), i(t), ODE’s, Netw, Eq. R.L,C,E,I,M…

Polygon

Software

C, C++

µP,µC
DSP

Mem

Partly

Coproc

Cl

R>>
*

+-
+Tcl

+ td

F

+
-

ADT = Abstract Data Type, DT = Discrete Time

22

OutlineOutline

• Design Space and Design Flow

• Hierarchy and Abstraction Levels

• Design Flow for SoC’s

• CAD tools

• Design Methodology

Page 12

H05H4- Lecture 2 – Methodology & Terminology

23

Design Flow for SoCDesign Flow for SoC

• Quick tour of how SoC are designed from concept to
layout

• Definition of Abstraction Layer, design
representations and design activities

• Terminology

24

Level 1: System LevelLevel 1: System Level

System
Algorithm

Behaviour Structure

Physical

Informal Specs

From Informal Specs to
Executable Concurrent Communicating Models of Computation=Process

GOAL : functional validation: ARE WE DESIGNING THE RIGHT SYSTEM?
-> Golden specification

CCM

Process

MoC

ADT

t

v,v

Page 13

H05H4- Lecture 2 – Methodology & Terminology

25

Tools (also for algorithmic level)Tools (also for algorithmic level)

• MATLAB-SIMULINK-STATEFLOW

• C++ Class libraries (System-C, SpecC)

• Co-design: GEZEL – FSMD with e.g. System-C and C
specifactions

• (VHDL: too slow, lacks system concepts,
incompatible with software parts)

26

MATLABMATLAB--SIMULINKSIMULINK--STATEFLOWSTATEFLOW

Work
space

Filter
Design

Stateflow(Synch-Reactive)

CT DT

DF

Out

Events Simulink

Page 14

H05H4- Lecture 2 – Methodology & Terminology

27

Level 2: Algorithmic LevelLevel 2: Algorithmic Level

System
Algorithm

Behaviour Structure

Physical

A) Optimize process = algorithm. (Data, operations, storage refinement)
B) Architectural Mapping = Hw/Sw , processor allocation, assignment
C) Create chip Floorplan

A B

Process

Processor-memory-bus
architecture

ad if hw swif

Algorithm

Chip FloorplanC
Analog

Hardware

Software

28

Design activities at algorithmic levelDesign activities at algorithmic level

ARE WE DESIGNING THE SYSTEM RIGHT?

• Between System and Algorithm (70% of gain!!!)
– Code transformations: reduce ops, storage
– Expand f(x) -> +, -, *,z-1, >>,…
– ADT-> bitvectors (precision! WL=cost)
– Refine communication
– Verify w.r.t. system spec

• At Alg. Level : Map into architecture
– Hw-Sw-A/D partition
– Allocation
– Assignment
– Software process scheduling (RTOS)

• Floorplanning

Page 15

H05H4- Lecture 2 – Methodology & Terminology

29

Example: Code transformationExample: Code transformation
c=[2.00 1.75 2.25] ;
for i=1:3

y(i)=0;
end;
for i=1:3

for j=1:3
x1=x(j+(i-1)*3+1);
x2=x(j+(i-1)*3);
if x1-x2>0 max=x1; else max=x2;
end;
y(j)=y(j)+max;

end;
end;
for i=1:3

uit=c(i)*y(i);
end;

c=[2.00 1.75 2.25] ;
for i=1:3

y(i)=0;
for j=1:3

a(i,j)=max(x(j+(i-1)*3+1),x(j+(i-1)*3));
end;

end;

for i=1:3
for j=1:3
y(i)=y(i)+c(i)*a(j,i);
end;
uit=y(i);

end;

Matrix a(3,3)
3 registers y(3)
10 registers x(10)

Change loop traversal
Merge loops
Expand max function

3 y registers
2 x registers x1 en x2
Save: 22-5=17 registers of n bits
Save 9-3=6 mpy, simplify mpy!

30

GEZEL Design EnvironmentGEZEL Design Environment

ARM

DSP
HW

Crypto
HW

Bridge Network
on Chip

HW

Embedded Software

MPSOC:
Heterogeneous
Implementation

Description

SH3
Sparc

ARM

IP Modules

Hardware
Components

Heterogeneous
Specification

MEM

GEZEL

Page 16

H05H4- Lecture 2 – Methodology & Terminology

31

FloorplanFloorplan and layoutand layout
Geometric organisation of chip based on area and W/L estimates
of architectural components.

Floorplan Final layout
(courtesy: J. Rabaey UCB)

32

Level 3: Register Transfer Level (RT)Level 3: Register Transfer Level (RT)

• System model: FSMD.
Register ->RT-operations->Register

• Time: clock cycle

• Signal: bitvector, array of std_logic (VHDL)

• Behaviour RT(BRT): = communicating
StateTransitionGraph (STG).
Focus= time scheduling of RT-operations

• Structure RT (SRT): =FSMD: operations to operators

Page 17

H05H4- Lecture 2 – Methodology & Terminology

33

Start: Start: BehaviouralBehavioural RT (BRT)RT (BRT)
Datamodel = FSM + DP actions Language template = clocked “case”

r:= f(x,r);
z =g(x,r);

any

b

c

a

cond / action

reset

forever {
wait until cl’event and cl=‘1’;
if(reset) state := a; else
case (state)
{
a : action1;state:=nextstate(a);

b : action2;state:=nextstate(b);

c : action3;state:=nextstate(c);
}

}

VHDL, Verilog, GEZEL,...

1 cycle

Evolution of state = schedule !
aaaabcbcbcaaa...

../..

../..
../..

../..

34

End: Structural RT level = FSMDEnd: Structural RT level = FSMD

MacroInstruction Status Clock

DATAPATH
C

Control
C

DATA
SIGNALS

Acc
reg

μ IR
reg

StatusRaddressR

Address
state

MIReg

Address
C

Data
store

(RAM)

C : Combinational
network of RT-
operators

R(eg) M-S registers

if(c[&clock]) reg:=f(x,y,z):;
z = g(x,y,reg);

State
reg

Page 18

H05H4- Lecture 2 – Methodology & Terminology

35

Design activities at RTDesign activities at RT

Three main tasks
• Scheduling
• Allocation
• Assignment

Example: algorithm
description in data flow
graph representation (DFG)

*1 *3 *2 *4

+1

+2

+4

+3

u1
x

c1 c3 c2 u2 c4

y

Algorithm = DFG
y=f(x,u1,u2)

36

Task 1: SchedulingTask 1: Scheduling

Decide the clock cycle for
each operation

Optimization goal can be:
• Mimimum execution time
• Minimum hardware cost
• Something in between

*1 *3

*2 *4
+1

+2

+3

+4

x
c1 c3 c2 u2 c4

y

u1 Cycle

1

2

3

FSMDATAPATH

Schedule for 2mpy||, 2add-> (allocation)

Page 19

H05H4- Lecture 2 – Methodology & Terminology

37

Task 2: AllocationTask 2: Allocation

Decide how many
operatORS of each type
are needed

*1 *3

*2 *4
+1

+2

+3

+4

x
c1 c3 c2 u2 c4

y

u1 Cycle

1

2

3

FSMDATAPATH

Example:
2 multipliers, 2 adders

A strategy to decide
this automatically?

38

Task 3: AssignmentTask 3: Assignment

Decide which operatIONS
goes on which operaTOR

Such that no access
conflicts (I.e. every unit
can be used only once in
every clock cycle)

Such that minimum overall
cost, mainly interconnect,
bus and storage cost.

*1 *3

*2 *4
+1

+2

+3

+4

x
c1 c3 c2 u2 c4

y

u1 Cycle

1

2

3
FSMDATAPATH

Page 20

H05H4- Lecture 2 – Methodology & Terminology

39

RT synthesisRT synthesis
From BRT to optimized SRT

M1

M2

R1

R2

A1

A2 R3

2

FSM

*1 *3

*2 *4
+1

+2

+3

+4

x
c1 c3 c2 u2 c4

y

u1 Cycle

1

2

3
FSMDATAPATH

clock

start

reset

x

u1

u2

c1

c2

c3

c4

y

done

40

RT tasksRT tasks

Scheduling/Allocation/Assignment
• Not necessary all present
• E.g. compilation on an existing processor

• Not necessary in this sequence
• E.g. AR|T designer tools:

Allocation/Assignment/Scheduling

Carefully check what is the optimization goal:
Real-time constraint? Or minimum hardware?

Page 21

H05H4- Lecture 2 – Methodology & Terminology

41

RegisterRegister--Transfer & Logic DesignTransfer & Logic Design

Behaviour Structure

Physical

Operation
Scheduling

Sw Compilation

High Level Synthesis = Scheduling/Allocation/Assignment
= Silicon Compilation

RT-synthesisAlgorithm

Block P&R

RT-Module (*,+..)

Std.Cell P&R
Module generation

Std. Cell

Std.Cell design

System

Algorithm

circuit

R/T
logic Logic Synthesis

IP Core Generation

FSMD (processor)

42

Level 4: Logic Level DesignLevel 4: Logic Level Design

• Behaviour: Boolean expressions, FSM
Clocked VHDL: wait until clock’event and clock=‘1’

• Signal Types: Bit, Std_Logic (1,0,x,H,L,W,U,Z,-)

• Structure: Gates, FF, Tri-State, tr. Gates, Load in Cinv

• Time: integer nsec or psec

y*Cinv

x
F(x)

ZeroDelay

tdlh

tdhl

td= tdxxi + a.y

Layout,
Floorplan

Extraction,
Estimation

Inertial Delay

td

Transport Delay

out F(x)

Out

Out

Page 22

H05H4- Lecture 2 – Methodology & Terminology

43

Logic Design ActivitiesLogic Design Activities

• Logic and FSM synthesis
– State minim., coding
– Multilevel Logic Optimisation

• Technology Mapping
– Functions to library cells
– Minimal Area for given delay

• Timing Verification
– Estimate wiring load C
– Critical logic path

• Layout
– P&R C extraction from wiring ...

Delay

Area

! !aoi ff

Extraction-> Timing

Timing
Closure

2 6... Logic
Depth

#literals

VHDL

Logic
Synthesis
(Synopsys)

44

Standard Cell LayoutStandard Cell Layout

Std. Cell

Std. Cell Place & Route (RT-Module)

Routing Channel

Cell Row

(Courtesy : Tanner Tools)

Page 23

H05H4- Lecture 2 – Methodology & Terminology

45

Standard Cell Zoom InStandard Cell Zoom In

layout

vdd

vss

46

Module GenerationModule Generation
For data-path operators: structure is in bit-slices

Computer generated layout as function of wordlength
Compact, predictable IP

Power

Instruction, Clock

Data

Page 24

H05H4- Lecture 2 – Methodology & Terminology

47

Standard Cell and ModuleStandard Cell and Module

Courtesy: J. Van Campenhout RUG

Datapath
Standard Cell
Random Logic

48

Global Chip Layout (Power PC)Global Chip Layout (Power PC)

Floating Point

Instruction
Cache

Data
Cache

Memory Mgmt

Integer
processors
+
registers

Bit-Slice
Module
Generator

Array
Module
Generator

Standard
Cell

Page 25

H05H4- Lecture 2 – Methodology & Terminology

49

Level 5: Circuit LevelLevel 5: Circuit Level

• Logic expression to transistor schematic

• Transistor dimensioning (P,A,T)

• Layout strategy

• Logic cell layout

• Characterisation
– VTC, levels, noise, power, speed...

50

Global SoC designGlobal SoC design--flowflow

Scheduling

RT-synthesis

IP core Generation

Behaviour Structure

Physical

RT-Module (*,+..)

FSMD
Chip (floorplan)

Chip+environment

Std. Cell

Algorithm

Informal Specs

CCM

Chip architecture
Logic Synthesiscircuit

logic

System

Algorithm
R/T

Top Down Design

Bottom-Up Implementation

Page 26

H05H4- Lecture 2 – Methodology & Terminology

51

OutlineOutline

• Design Space and Design Flow

• Hierarchy and Abstraction Levels

• Design Flow for SoC’s

• CAD tools

• Design Methodology

52

SoC CAD tools SoC CAD tools

Behaviour
Structure

Synthesis Verification

L

L-1

L-2

Validation L

L-1

L-2

S2L

Layout

Top-Down
Design

Bottom-Up
Implementation

L2S

LupLdo

Design Editor

Design
Database

Design Editor -B, S, L
Design Database -All B,S,L views
Validation
Synthesis
-High Level (scheduling)
-RT- and Logic Level
-A & D circuit synthesis
Verification
-Formal (proof of properties)
-Simulation
-Timing
S2L
-Place and Route
-Module generation
-Clock Network synthesis
L2S
-Structure Extraction
-Layout- and electrical rule check
Lup
-Block Place and Route
Ldo
-Floorplanning

Page 27

H05H4- Lecture 2 – Methodology & Terminology

53

OutlineOutline

• Design Space and Design Flow

• Hierarchy and Abstraction Levels

• Design Flow for SoC’s

• CAD tools

• Design Methodology

54

Design MethodologyDesign Methodology

• A set of best practices that lead to a time and cost
effective implementation of a complex system

• How to avoid design iterations?

• So that system satisfies the constraints but not more

“Sometimes we have to kill the engineer”

Page 28

H05H4- Lecture 2 – Methodology & Terminology

55

Best PracticesBest Practices

1. Spend most of the time at the top and document

2. Use interactive CAD tools with exploration
capabilities.

– A paintbrush makes no Van Gogh... The best CAD tool does not
make a good engineer

3. Keep it simple, stupid
– What is simple, what is complex?

56

Complexity Complexity
Complexity increases with:

• # different components (not # of components!)
• # different interactions (interconnect, protocol, types)
• Lack of structure in interactions

Complex Simple

Page 29

H05H4- Lecture 2 – Methodology & Terminology

57

KISSKISS

• Use encapsulation
– Both in software and hardware

• Synchronise actions and transactions
– Locally synchronous, globally asynchronous
– Localise heavy computation and traffic

• Keep communication simple and local
– Most problems are in interfaces
– Standardise interfacing
– Develop by refinement, avoid loops
– Minimize global traffic, localise traffic

• Separate function and communication
– Key concept of reuse - plug-and-play

• Use structured interconnect - avoid spaghetti

58

ModularityModularity

• Modularity means that a system is built from a
minimal number of re-usable parameterisable
entities or modules

• Document views, abstract to interface and behaviour

• Fights data explosion, encourages concurrent
engineering

Page 30

H05H4- Lecture 2 – Methodology & Terminology

59

Conclusion Ch IIConclusion Ch II

Different levels of abstraction:
• System,
• Algorithm
• Register transfer
• Logical
• Circuits
Different views at each level:
• Behavioral
• Structural
• Physical

