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Abstract-The concepts  of digital signal processing are playing an in- 
creasingly important role in  the area of multirate signal processing, i s .  
signal processing algorithms  that  involve  more than one sampling rate. 
In this paper  we present  a  tutorial overview of multirate digital signal 
processing as applied to  systems for decimation and interpolation. We 
fmt  discuss  a  theoretical model for such systems (based on the sampling 
theorem) and then show how various structures can be derived to pro- 
vide efficient implementations of these  systems. Design techniques for 
the linear-time-invariant components  of these systems  (the digital fdter) 
are discussed, and finally the  ideas  behind  multistage  implementations 
for increased efficiency are presented. 

I. INTRODUCTION 

0 NE OF THE MOST fundamental  concepts of digital sig- 
nal processing is the idea of sampling  a continuous  pro- 
cess to provide a  set of numbers which, in some  sense, is 

representative of the characteristics of the process  being 
sampled. If  we denote  a  continuous  function  from  the process 
being sampled as x&), -m< t < = where xc is a  continuous 
function of the  continuous variable t ( t  may represent  time, 
space,  or any  other  continuous  physical variable), then we can 
define the set. of samples  as x&), -= < n < where the  cor- 
respondence  between t and n is essentially  specified  by the 
sampling  process,  i.e., 

n = 0) (la) 

Many types of sampling  have been discussed in  the  literature 
[ 1  ] -[ 31 including  nonuniform sampling, uniform  sampling, 
and  multiple  function  uniform sampling. The most  common 
form of sampling,  and the  one which we will refer to through- 
out this paper is uniform  (periodic) sampling in which 

q ( t )  = t /T  = n (1b) 

i.e., the samples X D ( ~ )  are  uniformly  spaced  in  the  dimension 
t ,  occurring nT apart.  For  uniform sampling we define  the 
Sampling period as T  and the sampling  rate as 

F =  1/T (2) 

It should be clear from  the above  discussion that x c ( t )  can 
be sampled  with  any  sampling  period T.  However, for a  unique 
correspondence  between the  continuous  function x C ( r )  and 
the discrete  sequence X D ( ~ ) ,  it is necessary that  the sampling 
period  T be chosen to satisfy the  requirements of the Nyquist 
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sampling  theorem.  This  concept of a  unique  analog  waveform 
corresponding to  a digital sequence will often be  used in the 
course of our discussion to provide  greater  intuitive  insights 
into  the  nature of the processing algorithms that we  will be 
considering. 

The sampling  period  T is a  fundamental  consideration in 
many signal processing techniques  and  applications.  It  often 
determines  the  convenience,  efficiency,  and/or  accuracy  in 
which the signal processing can  be  performed. In some cases 
an  input signal may already be sampled at some  predetermined 
sampling  period  T and  the goal is to convert  this  sampled signal 
to a  new  sampled signal at a  different  sampling  period TI such 
that  the resulting signal corresponds to  the same  analog func- 
tion.  In  other cases it may be more efficient or convenient to 
perform  different  parts of a processing algorithm at different 
sampling  rates in which  case it may  be  necessary to convert 
the sampling  rates of the signals in the system  from  one  rate 
to another. 

The process of digitally converting the sampling  rate of a tip- 
nal  from  a given rate F = 1/T to a  different  rate F’ = 1/T is 
called sampling  rate  conversion. When the new  sampling rate is 
higher than  the original sampling  rate, i.e., 

F’> F ( 3 4  

or 

T ’ <  T (3b) 

the process is generally called interpolation since  we are cre- 
ating  samples of the original physical process from a  reduced 
set of samples. Historically the  mathematical process of in- 
terpolation, or “reading  between the lines,” has received  wide- 
spread attention  from  mathematicians  who were interested in 
the problem of tabulating  useful  mathematical  functions.  The 
question was how  often a given function had to  be  tabulated 
(sampled) so that  someone  could use a  simple  interpolation 
rule to obtain  accurate values  of the  function  at  any higher 
sampling rate [4] . Not  only  did  this  early  work  lead to an 
appreciation of the sampling process, but  it also led to  several 
interesting classes of “interpolation  functions” which could 
provide  almost  arbitrarily high accuracy in  the  interpolated 
values, provided that sufficient  tabulated values of the  func- 
tion were available. 

The process of digitally converting the sampling  rate of a 
signal from a given rate F to  a  lower rate F’, i.e., 

F ’ <  F ( 4 4  
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or 

T’> T (4b) 

is called decimation.’ It will be  shown in Section 111 that 
decimation and  interpolation of signals are  dual processes-i.e., 
a digital system  which  implements  a  decimator can be  trans- 
formed  into a  dual digital system  which  implements an  inter- 
polator using straightforward  transposition  techniques. 

The  techniques to be described in this  paper have been  ap- 
plied in a wide variety of areas  including: 

1)  communications  systems [ 51, [ 61 ; 
2)  speech processing systems [ 71 -[9] ; 
3)  antenna systems [ 101 ; 
4)  radar systems [ 1  1  ] , [ 121 . 

The above  list  contains  only  a few representative  examples of 
multirate digital systems. 

From a digital signal  processing point of view, both  the pro- 
cesses of interpolation  and  decimation can be well formulated 
in  terms of linear  filtering  operations.  This is the basic point 
of view we have taken  in  this  paper. We begin in Section I1 
with the  mathematical  (and signal processing) framework of 
sampling,  interpolation,  and  decimation.  In  Section 111 we dis- 
cuss digital networks  (structures)  which  can be  used to imple- 
ment  the  conversion  from one sampling rate to another. In- 
cluded in this  section is a brief  review of signal-flowgraph 
representations of digital systems,  and of structures  for imple- 
menting  the digital filters  required  for  all  sampling  rate  con- 
version systems. It is then  shown  how  efficient  implementa- 
tions of sampling  rate  conversion  systems  can be obtained  by 
simple manipulations of the  proposed  canonic  structures. 

In  Section IV, we discuss the  question of how to  design the 
digital filter used in the systems  presented  in  Sections I1 and 
111. It is shown  that  two general structures can  be  used to aid 
in the design of the special filters  required  in  sampling rate 
conversion  systems. Based on these  structures,  a  number of 
special purpose design algorithms  are  described. 

Finally  Section V addresses the  question of special structures 
for handling two special  cases of sampling rate conversion, 
namely: 1) large changes in sampling  rates  within the system 
and  2) changes in sampling rate requiring large sampling rate 
changes internally  in  the structure-e.g.,  sampling  rate  con- 
version by  a factor of 971151.  Each  of these cases can be 
handled  most  efficiently  in  a  multistage  structure  in  which  the 
sampling rate conversion  occurs in a series of 2 or  more dis- 
tinct stages. Questions of computational,  storage,  and  control 
efficiency  are of paramount  concern  in  the discussions in 
this  section. 

In  this  paper, we only  consider  decimation  and  interpolation 
systems based  on finite  impulse  response (FIR) realizations. 
Another  broad class of sampling rate conversion  systems that 
can  also be  defined is based on  infinite impulse  response (IIR) 
realizations. However, they  do  not conveniently  permit  linear 
phase  designs and  a discussion  of these issues  was considered 
to  be beyond  the scope of this  paper. 

11. BASIC CONCEPTS OF SAMPLING RATE CONVERSION 
Fig. 1 provides a  general  description of a  sampling rate con- 

version system. We are given the signal x(n), sampled at  the 
rate F = 1/T,  and wish to compute  the signal y (m)  with  a  new 

signal processing  decimation has come t o  mean a reduction in sampling 
Strictly  speaking  decimation  means a reduction by 10 percent. In 

rate by  any  factor. 

Fig.1. Basic process of digital  sampling  rate  conversion. 

sampling  rate F’ = l /T’.  We will assume throughout this paper 
that  the  ratio of sampling  periods of y (m)  and x (n) can be  ex- 
pressed as  a  rational  fraction, Le., 

T’IT = FIF’ =MIL ( 5 )  

where M and L are  integers. 
A close examination of the  structure of Fig. 1 shows that 

the systems we are dealing with for  digital-todigital  sampling 
rate  conversion  are  inherently  linear time-varying systems, i.e., 
g,(n) is the response of the system at  the  output sample time 
m to an  input  at  the  input sample  time  [mM/Ll - n where 
[ u ]  denotes  the integer less than  or  equal to u (this will be- 
come clearer in  later discussion). 

Since the system is linear,  each output sample y(m) can be 
expressed  as  a  linear  combination of input samples. A general 
form  for this expression, which is used  extensively in this 
paper, is [ 13 1 

A derivation of (6) is given shortly where it is also seen that 
the system  response g, ( n )  is periodic in m with  period L ,  i.e., 

g,(n) =gm+rL(n) ,  r = 0, f l ,  f2,  . - . (7) 

Thus  the  system g,(n) belongs to the class of linear, peri- 
odically  time-varying systems.  Such  systems have been  ex- 
tensively studied  for  a wide  range of applications [ 141, [ 151.  

In  the trivial case  when  T’ = T,  or L = M = 1,  equation  (6) 
reduces to  the simple  time-invariant digital convolution 
equation 

n=-m 

since the period of g,(n) in  this case is 1,  and  the integer part 
o f m - n i s t h e s a m e a s m - n .  

In  the  next few sections we study  in  some detail the struc- 
ture  and  properties of systems that perform two special cases 
of sampling rate conversion,  namely  decimation by integer 
factors,  and  interpolation by integer  factors [ 161. We then 
consider the general  case of a sampling rate  change by a factor 
of LIM. 

A.  Sampling Rate  Reduction-Decimation by an 
Integer  Factor M 

Consider the process  of reducing the sampling  rate of x(n) 
by  an  integer factor M,  i.e., 

T’IT= ~ 1 1 .  (9) 

Then  the new  sampling  rate is F’ = F/M. Assume that x(n) 
represents  a  full  band signal, i.e., its  spectrum is nonzero  for 
all frequencies f i n  the range -F/2 Q f Q F/2, with o = ZnjT, 
i.e., 

IX(eiw)l #O, 101 = I2nfTl < - 2nFT 
2 

= n  (10) 
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except possibly at an  isolated  set of points. Based on well 
known sampling theory,  in  order to lower the sampling  rate 
and to avoid aliasing at  this  lower rate,  it is necessary to filter 
the signal x (n) with  a digital low-pass filter which approximates 
the  ideal  characteristic 

The  sampling  rate  reduction is then achieved by  forming the 
sequence y ( m )  by extracting every Mth sample of the filtered 
output. This process is illustrated  in Fig. 2(a). If  we denote 
the  actual low-pass filter  unit  sample  response as k ( n ) ,  then 
we have 

w ( n ) =  c k ( k ) x  ( n -  k )  
00 

n =-m 

where w ( n )  is the filtered output as seen in Fig. 2(a). The final 
output y ( m )  is then  obtained as 

y ( m )  = w(Mm) (13) 

as denoted by the  operation of the second box  in Fig. 2(a). 
This  block diagram symbol, which  will  be referred to as  a 
sampling rare compressor, will  be  used consistently throughout 
this  paper,  and  it  corresponds to the resampling operation 
given by  (13). 

Fig. 2(b) shows typical  spectra  (magnitude of the  Fourier 
transforms) of the signals x ( n ) ,   k ( n ) ,  w(n) ,  and y ( m )  for  an 
M to 1  reduction  in  sampling  rate. 

By combining (1 2)  and  (13)  the relation  between y ( m )  and 
x (n) is of the  form 

00 

y ( m ) =  k ( k ) x ( M m  - k) (14) 
k=-oa 

which is seen to be a special  case  of (6).  Thus  for  decimation 
by integer  factors of M we have 

gm ( n )  = g ( n )  = k (n), for all m and all n. (1 5) 

Although gm(n)  is nor a function of m for  this case, it can 
readily  be  seen that  the overall system of (14)  and Fig. 2(a) is 
not time-invariant  by considering the  output signal obtained 
when x ( n )  is shifted  by  an  integer  number of samples. For 
this  case, unless the shift is a  multiple of M, the  output is nor 
a  shifted version of the  output  for 0 shift, i.e., 

x ( n )  +r(m) (164  

but 

SAMPLING  RATE 
DECREASE By M 

Fig. 2. Block diagram  and typical  spectra  for  sampling  rate  reduction 
by a  factor of M 

where the  term  in  brackets  corresponds to a  discrete  Fourier 
series representation of a  periodic  impulse  train  with  a  period 
of M samples. Thus we have 

y ( m )  = w'(Mm) = w (Mm) (19) 

We now  write the z-transform of y ( m )  as 

and since w'(m) is zero  except at integer  multiples of  M, equa- 
tion  (20) becomes 

x ( n  - 6 ) F y  (m - 6/M) unless 6 =rM.  (16b) 
= [ 5 w ( m )  ej2nlm/MZ - m / ~  

1 M-1 

It is of value to derive the relationship  between the z-trans- m=--  I forms of y ( m )  and x (n) so as to be able to study  the  nature of 
the  errors  in y ( m )  caused by the  imperfect low-pass filter. To 
obtain  this  relationship we define the signal 

1 M-1 

I = o  

y ( z )  = - W(e-i2nVMZ'/M 1. 

w(n) ,  n = 0, *M, +2M, * * 

otherwise 
w'(n) = 

{O, 
(17) Since 

i.e., w'(n) = w(n)  at  the sampling instants of y ( m ) ,  but is zero W ( z )  = H ( z )  x (2) 
otherwise. A convenient  and  useful  representation of w'(n) 
is then we can express Y ( z )  as 

w'(n) = w ( n )  {G ei2nzn/M}, --oo < n < -oo (18) 
1 M-1 

I =O 
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(dl 
Fig. 3. Block  diagram and  typical  waveforms  and  spectra  for  sampling 

rate  increase by a  factor  of L. 

Evaluating Y ( z )  on  the  unit circle, z = eiw’, leads to the result 

where 

w’ = 2nfT’ (in  radians  relative to sampling  period T’) .   (24b)  

Equation ( 2 4 )  expresses the  Fourier  transform of the  output 
signal y ( m )  in  terms of the  transforms of the aliased com- 
ponents of the filtered input signal x ( n ) .  By writing the  in- 
dividual components of ( 2 4 )  directly we  see that 

+H(ei(w’-2n)/M)X(ei(w‘-2n)/M) + . . . . ( 2 5 )  

The  purpose  of  the low-pass filter H ( e J W )  is to sufficiently 
filter x ( n )  so that  its  components above the  frequency 
w = n/M are negligible. In  terms of ( 2 4 )  this implies that all 
terms  for l # 0 are  removed  and if the filter H ( e I W )  closely 
approximates  the ideal  response of (1 1)  then ( 2 4 )  becomes 

I 

B. Sampling  Rare  Increase-Interpolation by an 
Integer  Facror  L 

the  new  sampling  period T’ is 
If the sampling  rate is increased  by an integer factor L ,  then 

T ’  1 
T L  

-= -  

and the new sampling  rate F’ is F ’ =  LF.  This process of in- 
creasing the sampling  rate of a signal x ( n )  by L implies that we 
must interpolate L - 1 new  sample values between  each pair of 
sample values of x (n) .  

Fig. 3  illustrates t h i s  process of increasing the sampling  rate 
by  a factor L = 3.  The  input signal x ( n )  is “filed-in”  with 
L - 1 zero-valued  samples between  each  pair of samples of 
x ( n )  giving the signal 

w ( m )  = 
x ( m / L ) ,  m = 0 ,  +L,  *2L, * * * 

( 2 8 )  
otherwise. 

As with the resampling operation,  the  block diagram symbol 
of an up-arrow  with an integer  corresponds to increasing the 
sampling rate as given  by ( 2 8 )  and  it will  be referred to as  a 
sampling rare expander. The  resulting signal w(n)  has  the 
z-transform - 

W(Z) = w(m)z-m  (294 
m =-- 

= x ( m ) z - m L  (29b) 

= X ( Z L ) .  (294  

m =-OD 

Evaluating  W(z) on  the  unit circle z = elW , gives the result 
. I  

w (eiw’ = X ( p ‘ L  (30) 

which is the  Fourier  transform of the signal w ( m )  expressed in 
terms of the  spectrum of the  input signal x ( n )  (where w’ = 
27rf T’ and w = 2nf T ) .  

As illustrated  by the spectral  interpretation  in Fig. 3(c)  the 
spectrum of w ( n )  contains not only  the  baseband  frequencies 
of interest (i.e., -n /L to n / L )  but also  images  of the baseband 
centered at harmonics of the original  sampling frequency 
f 2 n / L ,   + 4 n / L ,  * * . To recover the baseband signal of interest 
and  eliminate the  unwanted  higher  frequency  components it is 
necessary to filter the signal w ( m )  with  a digital low-pass filter 
which approximates  the  ideal  characteristic 

10, otherwise. 

It will be shown  that  in  order to ensure that  the  amplitude of 
y ( m )  is correct,  the gain  of the filter G must  be L in  the 
passband. 

Letting H(e iW’ )  denote  the  frequency response of an  actual 
filter  that  approximates  the  characteristic in (31)  it is seen that 

y ( e i ” ’ >  = ~ ( e i w ’ ) X ( ~ i w ’ ~ )  (32) 

and  within the  approximation of (31) 

Iw’I < n/L  
Y (eJW ) (33) 

otherwise. 

It is easy to see why we need  a gain of G in E ( e i w ) ,  whereas 
for  the  decimation  filter  a gain  of 1 is adequate, by examining 
the  zeroth sample of the sequences.  From Fig. 2 it is  clear 
that 

= x(0) 

if we assume that I H ( e i W )  I = 1 for 1 0  I < IT/M and 
I X ( e l w )  1 = 0 for 1w I > n/M. Alternatively for  the  inter- 
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G 
L 

= - x ( 0 ) .  

Therefore,  a gain G = L is required to match  the  amplitudes of 
the envelopes of the signals y ( m )  and x ( n ) .  

If h ( m )  denotes  the  unit sample  response of H(eiw’),  then 
y ( m )  can  be  expressed as 

0 

y ( m ) =  x h ( m -  k ) w ( k ) .  (34) 
k=-m 

Combining (28) and  (34) leads to 

y ( m ) =  2 h ( m  - k ) x ( k / L )  
&=-m 

m 

= h ( m  - r L ) x ( r ) .  (35) 
r=-m 

Next we introduce  the change of variables 

r = E J - n  

and the  identity 

(37) 

where [ u ]  denotes  the integer less than  or  equal to u and 
(i) eL denotes  the value of i modulo L .  Applying (36)  and 
(37)  (with M = 1) to  (35)  then gives 

Equation  (38) expresses the  output y ( m )  in  terms  of  the  input 
x ( n )  and  the filter  coefficients h ( m )  and  it is again seen to be 
a special  case  of (6).  Thus  for  interpolation by integer factors 
of L we  have 

g , ( n ) = h ( n L + m @ L ) ,  foral lmandal ln  (39) 

and it is seen that gm(n)  is periodic in m with  period L as indi- 
cated  by (7).  

C. Sampling  Rate  Conversion  by a Rational  Factor  MIL 
In the previous two sections we  have considered the cases of 

sampling  rate  reduction by  an integer factor M and sampling 

SAMPLING RATE 
INCREASE BY L 

SAMPLING RATE 
DECREASE BY M 

r-------- 1 r--------l 

F F“= LF F ’ . L ,  

(a) 
m 

F F‘= LF F 1’ F‘=k F 

(b) 
Fig. 4. (a)  Cascade of an integer interpolator and an integer decimator 

for achieving  sampling  rate conversion by rational fractions. (b) A 
more efficient implementation of this process. 

rate increase by  an  integer factor L .  In  this  section, we con- 
sider the general  case of conversion  by the  ratio 

T’ M 
T L  
-=-  

or 

F ’ =  - F .  
L 
M 

This conversion  can  be  achieved by  a cascade  of the  two above 
processes of integer  conversions  by  first increasing the sampling 
rate  by L and  then decreasing it by M. Fig. 4(a)  illustrates  this 
process. It is important to recognize that  the  interpolation  by 
L must precede the decimation process  by M so that  the width 
of the baseband of the  intermediate signal s ( k )  is greater than 
or  equal to  the width of the basebands of x ( n )  or y ( m ) .  

It can  be  seen from Fig. 4(a) that  the  two filters h l ( k )  and 
h 2 ( k )  are  operating  in cascade at  the same sampling rate L F .  
Thus  a  more  efficient  implementation of the overall process 
can  be  achieved if the filters  are  combined into  one composite 
lowpass filter  as  shown  in Fig. 4(b). Since this digital filter 
h ( k )  must serve the purposes of both  the decimation and 
interpolation  operations  described  in  the previous two sections 
it is clear from  (1 1) and  (31)  that  it must  approximate  the 
ideal digital low-pass characteristic 

(0, otherwise 

where 

OR = 2nfTpr = 2nfT/L (43) 

i.e., the  ideal  cutoff  frequency must  be the  minimum of the 
two  cutoff  frequency  requirements  for  the decimator  and in- 
terpolator  and  the  sampling  rate of the  filter is F” = L F .  

The  time  domain  input-to-output  relation  for  the  general 
conversion circuit of Fig. 4(b) can be derived by  considering 
the integer  interpolation  and  decimation  relations derived in 
Sections 11-A and 11-B,  i.e., from  (35)  it can  be  seen that u(k) 
can  be expressed  as 

u(k) = h ( k -  r L ) x ( r )  (44) 
OD 

r=-m 
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and  from  (1  3) y ( m )  can  be expressed in  terms of u ( k )  as 

y ( m )  = v(Mm).  (45) 

Combining (44) and  (45) gives 
a0 

y ( m )  = h(Mm - r L ) x ( r )  (46) 
r=-a0 

and making the change of  variables 

r =  E] - n 

and  applying (3 7)  gives 

(47) 

It  is seen that (48) corresponds to  the general form of the 
time-varying digital-todigital  conversion  system described by 
(6)  and  that  the time-varying unit  sample  response g,(n) can 
be  expressed  as 

gm(n)  = h (nL + mM L ) ,  for all m and all n (49) 

where h ( k )  is the time-invariant  unit  sample  response of the 
low-pass digital filter at  the sampling  rate L F  [ 13 I . 

Similarly, by considering the  transform relationships  of  the 
individual  integer decimttion  and  interpolation  systems,  the 
output  spectrum Y(e iw  ) can  be determined  in  terms of 
the  input  spectrum X ( e l w )  and  the  frequency  response of the 
filter H(ejW").  From  (32)  it is seen that V(eiw") can be  ex- 
pressed in  terms  of X ( e i w )  and H(eiW") as 

J7(ei"") = H(eiw") X (ejw'IL 1 (50) 

and  from  (21) Y(eiw') can  be expressed in  terms  of  V(eiw")as 

When H(ejW') closely approximates  the  ideal  characteristic 
of (42)  it is seen that  this  expression  reduces to 

, for lw'l < min (a, aM/L)  (52) 

otherwise 

Thus  far, we have  developed the general system  for  sampling 
rate  conversion of low-pass signals by  arbitrary  rational  factors 
L/M. It was shown  that  the process of sampling  rate  conver- 
sion  could be modeled  as  a  linear,  periodically time-varying 
system,  and  that  the  unit sample  response of this  system, 
g,(n) could be expressed in terms of the unit  sample  response 
h ( k )  of a  time-invariant digital filter designed for  the highest 
system  sampling  rate LF.  

D. Sampling  Rate  Conversion of Bandpass Signals 
In  the preceding  sections it was  assumed that  the signals that 

we are dealing with  are low-pass signals and  therefore the filters 

-277 -H 0 H 2 H  w '  

(e 1 
Fig. 5. Decimation of a  bandpass signal and  a  spectral interpretation 

for the k = 2 band. 

required  for  decimation  and  interpolation  are low-pass filters 
which  preserve the baseband signals of interest.  In  many 
practical  systems it is also  necessary to deal with  bandpass sig- 
nals and many of the results discussed in this paper can be 
logically extended to  the bandpass case  as  well.  While it is not 
our  intention to go into detail on these issues in this paper we 
will  briefly  give  an example in this  section of one way in which 
this can be done. A more involved  discussion of these issues 
can  be found in [ l o ] .  

Perhaps the simplest and most  direct  approach to decimating 
or  interpolating digital bandpass signals is to take  advantage of 
the  inherent  frequency  translating (i.e., aliasing) properties of 
decimation  and  interpolation.  This  property can be used to 
advantage  when dealing with  bandpass signals by associating 
the  bandpass signal with one of these  modulated  cLharmonics'y 
instead of with the baseband. Fig. 5(a)  illustrates an example 
of  this process for  the case of decimation by the integer factor 
M .  The  input signal x ( n )  is first  filtered by  the bandpass filter 
h g p ( n )  to isolate the  frequency  band of interest.  The resulting 
bandpass signal x a p ( n ) ,  is then directly  reduced in sampling 
rate  by  selecting  one out of  every M samples  giving the final 
output y (m) .  It is seen that this  system is identical to  that of 
the integer low-pass decimator  with  the  exception  that  the 
fiiter is a  bandpass  filter  instead of a low-pass filter.  Thus the 
output signal Y(elW ) can be  expressed as 

(53) 

From  (53)  it is seen that Y(e jW' )  is composed of M aliased 
components of X(eJW ) HBP (e'"') modulated  by  factors of 
2nllM. The  function of the filter H ~ p ( e l ~ )  is to remove (at- 
tenuate) all aliasing components  except  those associated with 
the desired band of interest. Since the  modulation is restricted 

. ,  



306 PROCEEDINGS OF THE IEEE, VOL. 69, NO. 3,  MARCH 1981 

to values of 2 d / M  it can be seen that  only specific  frequency 
bands  are allowed by  this method. As a  consequence the 
choice of the filter H a p  (e'") is restricted to approximate  one 
of the M ideal  characteristics 

I 1, kn /M<IwI<(k+ l )n /M iiBp (e iw = (54) 
0, otherwise 

where k = 0, 1, 2, , M - 1, i.e., HBP (e'") is restricted to 
bands w = kn/M to w = ( k  + 1) n/M where n/M is the 
bandwidth. 

Figs. 5(b)-(e)  illustrate  this  approach. Fig. 5(b)  shows the M 
possible modulating  frequencies which are  a  consequence of 
the M to 1  sampling rate  reduction, i.e., the digital sampling 
function (a periodic  train of unit samples  spaced M samples 
apart) has spectral  components spaced 2nl/M apart. Fig. 5(c) 
shows the "sidebands" that are  associated  with  these  spectral 
components which correspond to the M choices of bands as 
defined by  (54).  They  correspond to  the bands that  are aliased 
into  the baseband of the  output signal Y(ei"') according to 
(54). (As seen  by (53) and (54)  and Figs. 5(b)  and  (c),  the re- 
lationship  between k and 1 is nontrivial). 

Fig. 5(d)  illustrates an  example in which the k = 2 band is 
used, such that X,, (e'") is bandlimited to the range 2n/M < 
I w I < 3n/M. Since the process of sampling rate  reduction  by 
M to 1  corresponds to a  convolution of the  spectra  of XBp (eiw ) 
(Fig.  5(d))  and the sampling  function  (Fig. 5fb))  this band is 
lowpass translated to  the baseband of Y(eiw ) as seen in Fig. 
5(e).  Thus, the processes of modulation  and  sampling  rate re- 
duction  are achieved simultaneously  by the M to 1  sampling 
rate  reduction. 

The process of bandpass  interpolation is the inverse to  that 
of bandpass decimation  and it can be  accomplished in a similar 
manner. Referring to Fig. 3(c) it is seen that we can  use a 
bandpass  filter  with  a  characteristic similar to  that described 
by (54)  (with M replaced  by L )  to remove one of the harmonic 
images of the baseband signal rather  than  the  baseband signal 
itself. The  net  result is that we achieve both  an  interpolation 
and  a  modulation of the  input signal to  one of its  harmonic 
locations  in the  spectrum. 

III. SIGNAL PROCESSING STRUCTURES FOR DECIMATORS 
AND INTERPOLATORS 

It is easy to understand  the need  for  studying  structures for 
realizing  sampling rate conversion systems by examining the 
simple block diagram of Fig. 4(b) which  can be used to con- 
vert the sampling  rate of a signal by  a  factor  of L / M .  As dis- 
cussed in  Section I1 the  theoretical  model  for  this  system is 
increasing the signal sampling rate  by  a  factor of L (by filling 
in L - 1 zero-valued  samples between  each  sample  of x ( n )  to 
give t h e  signal w ( k ) ) ,  filtering w ( k )  to eliminate the images of 
X(e'") by  a  standard  linear  time-invariant low-pass filter, 
h ( k ) ,  to give u ( k ) ,  and sampling rate compressing u ( k )  by a 
factor M (by retaining  1 of each M samples of u ( k ) ) .  A direct 
implementation of the system of  Fig. 4(b) is grossly inefficient 
since the low-pass filter h(k)  is operating  at  the high sampling 
rate  on a signal for which L - 1 out of each L input values are 
zero,  and the values of the  filtered  output are  required  only 
once  each M samples. For this  example, one can directly  ap- 
ply this  knowledge in implementing the system of Fig. 4(b) in 
a  more  efficient  manner as will  be  discussed in this  section. 
Later  in  Section V we  will extend  these  concepts to include 

Fig. 6. Direct form structure for 811 FIR fdter. 

multistage  implementations  which can  achieve greater effi- 
ciencies than single stage  designs when the conversion ratios 
are large. 

Before  discussing specific classes of structures  for  sampling 
rate  conversion we will first  briefly review in  Section 111-A a 
number of fundamental  network  and signal-flowgraph con- 
cepts which will be used in developing these  structures. We 
will then discuss three  principle classes of FIR  structures  for 
realizing single stage  interpolators  and  decimators  and  com- 
pare  their  properties. 

A .  Signal-Flowgraphs 
In order to precisely define the  sets of operations necessary 

to implement  these digital systems we will strongly  rely on  the 
concepts of signal-flowgraph representation  in  this  section 
[ 171 -[ 191 . Signal-flowgraphs provide  a graphical representa- 
tion of the explicit  set of equations  that  are used to implement 
such  systems. Furthermore, manipulating the flowgraphs  in  a 
pictorial way is equivalent to manipulation of the  mathe- 
matical  equations. 

Fig. 6 illustrates  an  example of a signal-flowgraph of a  direct- 
form  FIR digital filter.  The  input  branch applies the  external 
signal x (n) to  the network  and  the  output of the  network y (n) 
is identified as one of the  node values.  Branches define the 
signal operations  in  the  structure  such as delays, gains, and 
sampling rate  expanders  and  compressors. Nodes define the 
connection  points  and summing  points.  The signal entering  a 
branch is taken as the signal associated  with the  input  node 
value of the branch. The  node value  of a  branch is the sum of 
all branch signals entering  the  node. 

Therefore  from the signal-flowgraph (Fig. 6) we can im- 
mediately  write  down the network  equation as 

y ( n )  = x ( n )  h (0) + x ( n  - 1) h (1) + * * 

+ x ( n  - N +  1 ) h  ( N -  1). 

An important  concept in the  manipulation of signal-flow- 
graphs is the principle of commutation of branch  operations. 
Two  branch  operations  commute if the  order of their cascade 
operation can be  interchanged  without  affecting the  input-to- 
output response of the cascaded system.  Thus  interchanging 
commutable  branches  in  a  network is one way  of modifying 
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Fig. 7. Transposed direct form structure for an FIR fdter. 

TRANSPOSE +'--"+ 
Fig. 8. Transpositions of the sampling rate compressor and expander. 

TRANSPOSE 

Fig. 9. Transpose of a generalized L/M sampling rate changer. 

the  network  without  affecting  the desired input-to-output 
network  response.  This  operation will be  used extensively  in 
constructing  efficient  structures for decimation  and  interpola- 
tion  as we shall see shortly. 

Another  important  network  concept  that we rely  heavily on 
is that of transposition  and  duality [ 171 -[21]. Basically a 
dual  system is one which performs  a  complementary  operation 
to  that of an original system and  it can be constructed  from 
the original system through  the process of transposition. We 
have already seen an  example of dual  systems,  namely the 
integer  decimator  and  interpolator  (Fig.  2(a)  and Fig. 3(a))  for 
the case M = L .  

Basically the  transposition  operation is one in which the di- 
rection of all  branches  in the  network  are reversed and  the 
roles of the  input and output of the  network  are  interchanged. 
Furthermore  all  branch  operations  are  replaced  by  their  trans- 
pose operations. In the case  of linear  time-invariant  branch 
operations,  such as gains and delays, these  branch  operations 
remain  unchanged.  Thus,  for  example,  the  transpose of the 
direct  form  structure of Fig. 6 is the transposed  direct  form 
structure  shown  in Fig. 7. Also it can be  shown [ 171 -[21] 
that  for  the case of linear  time-invariant  systems the  input-to- 
output  system response of a  system and  its  dual  are  identical 
(e.g., it can be verified that  the  networks of  Fig. 6 and Fig. 7 
have identical  system  functions). 

M 2 )  
M 

Fig. 10. Generation of an efficient direct form structure of an M to 
1 decimator. 

For time-varying systems  this is not necessarily the case. For 
example, the transpose of a  sampling  rate  compressor is a 
sampling rate  expander  and  the  transpose of a  sampling  rate 
expander is a sampling rate  compressor as shown  in Fig. 8. 
Clearly these  systems do  not have the same system  response. 

By extending  the  concepts of transposition  rigorously it can 
also  be shown that  the  transposition of a  network  that per- 
forms  a  sampling  rate conversion by the  factor L/M is a net- 
work that performs  a sampling rate conversion by the  factor 
MIL. This is illustrated  in Fig. 9. 

B. Direct  Form  FIR  Structures  for  Integer Changes 
in Sampling  Rates 

Consider the  model  of  an M to 1  decimator as developed in 
Section 11, and as shown  in Fig. 10(a).  According to this 
model the  filter h ( n )  operates  at the high sampling rate F and 
M - 1 out of  every M output samples  of the filter  are  discarded 
by the M to 1 sampling rate  compressor.  In  particular if we 
assume that  the filter h ( n )  is an  N-point  FIR  filter realized 
with  a  direct  form  structure, the  network of Fig. 1 O(b) results. 
The  multiplications  by h(O), h ( l ) ,  * . , h ( N  - 1) and  the as- 
sociated  summations  in  this  network  must be performed  at 
the  rate F .  

A more  efficient  realization of the above structure can  be 
achieved  by noting  that  the  branch  operations of sampling 
rate  compression and gain  can  be commuted. By performing  a 
series of commutative  operations  on  the  network,  the  modified 
network of Fig. 1O(c) results. The multiplications  and  addi- 
tions associated with the coefficients h (0) to h ( N -  1)  now 
occur  at  the  low sampling rate F/M and  therefore  the  total 
computation  rate  in  the  system  has  been  reduced by a  factor 
M. For every M samples of x ( n )  which are  shifted into  the 
structure  (the cascade of delays)  one output sample y ( m )  is 
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Modified  direct form FIR filter structure for  exploiting  impulse 
response symmetry. 
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Fig. 12. Direct form  realization of an M to  1 decimator that  exploits 
symmetry in h (n )  for even values of N. 

computed. Thus the  structure of  Fig.  1O(c) is seen to be a di- 
rect  realization of (1 4) in  Section 11-A. 

An alternate  form of this structure which  can exploit  sym- 
metry  in h ( n )  (for linear phase  designs)  can  be  derived by 
using the modified  direct form  structure of  Fig. 11  (for N 
even).  This  leads to  the M to 1  decimator  structure  shown  in 
Fig. 12  and  it requires  approximately  a  factor of 2 less multi- 
plications than  the  structure of Fig. lO(c). 

An efficient structure  for  the 1 to L integer  interpolator 
using an  FIR filter  can be  derived in  a similar manner. We 
begin with the cascade model  for  the  interpolator shown in 
Fig. 13(a).  In  this case however, if h ( m )  is realized with  the 
direct  form structure of Fig. 6 we are  faced  with the  problem 
of commuting  the 1 to L sampling rate  expander  with  a series 
of unit delays.  One  way around this problem is to realize 
h ( m )  with the transposed  direct  form FIR  structure as shown 
in Fig. 7 [ 221. The sampling rate  expander can then be 
commuted  into  the  network as shown  by the series of opera- 
tions  in Fig. 13. Since the coefficients h (0), h ( I ) ,  * - * , 

h ( N  - 1) in Fig. 13(c)  are  now  commuted to  the low  sampling 
rate side  of the  network  this  structure  requires  a  factor of L 
times less computation  than  the  structure in Fig. 13(b). 

An alternative way  of  deriving the  structure of Fig. 13(c) is 
by  a  direct  transposition of the  network of Fig. 1 q c )  (letting 
L = M). This is a  direct  consequence of the  fact  that  decima- 
tors  and  interpolators  are duals.  Similarly an  efficient  direct 
form  interpolator  structure which  can exploit  symmetry  in 
h ( n )  can  be obtained  by  transposing  the  structure of Fig. 12 
and  letting L = M. A further  property of transposition is that 
for  the resulting  network,  neither the  number of multipliers 
nor  the  rate  at which these  multipliers  operate will  change 
[ 211. Thus if we are given a  network  that is minimized  with 
respect to its  multiplication  rate,  then  its  transpose will also 
be minimized  with  respect to its multiplication  rate. 

C. Polyphase FIR Structures for Integer  Uecimators 
and Interpolators 

A second general class of structures  that are of interest  in 
multirate digital systems  are the polyphase  networks  (some- 
times  referred to as N path  networks) [ 221, [ 231. We will 
find it convenient to first derive this structure  for  the L to 1 
interpolator  and  then  obtain  the  structure  for  the  decimator 
by  transposing the  interpolator  structure. 

In Section I1 it was shown  that a general form  for  the 
input-to-output  time-domain  relationship  for  the  1 to L 
interpolator is 

where 

g,(n) = h(nL + m @ L), for all rn and n ( 5 6 )  

is a  periodically time-varying filter  with  period L. Thus to 
generate  each output  smple y(rn), m = 0, 1, 2, * * * , L - 1, 
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Fig. 14. Polyphase structures for  a 1 to L interpolator. 

a  different  set of coefficientsg,(n)  are  used.  After L outputs 
are  generated,  the  coefficient  pattern  repeats;  thus y ( L )  is 
generated using the same set of coefficients go(n) as y(O) ,  
y ( L  + 1) uses the same set of coefficients gl (n) as y (  l) ,  etc. 

Similarly the  term [ m / L ]  in (55) increases  by one  for every 
L samples  of y(m). Thus  for  output samples y ( L ) ,   y ( L  + l),  

samples x(1 - n). In general, for  output samples y ( rL) ,  
y ( rL  + l ) ,  * * * , y ( r L  + L - 1)  the coefficients g, (n) are multi- 
plied  by samples x ( r  - n). Thus  it is seen that x ( n )  in  (55) is 
updated at  the  low sampling  rate F ,  whereas y (m) is evaluated 
at the high sampling  rate LF. 

An implementation of the 1 to L interpolator based on  the 
computation of (55) is shown  in Fig. 14(a).  The way in which 
this  structure  operates is as  follows. The  partitioned  subsets, 
go(n), gl(n), . * * , gL-l (n), of h(m) can  be identified  with L 
separate  linear,  time  invariant  filters  which  operate at  the low 
sampling rate F. To make this subtle  notational  distinction 
between the time-varying coefficients  and the time-invariant 
filters we  will refer to  the time-invariant  filters respectively as 
 PO(^),  PI(^), * * * , PL-I  (n). Thus 

. . .  , y(2L - 1)  the coefficients g,(n) are  multiplied  by 

p , ( n )  =g,(n),  for p = 0, 1,2,  * * e ,  L - 1 and all n. 

(57) 

These filters p , (n )  will be referred to as the polyphase  filters. 
Furthermore by combining (56)  and  (57) it is apparent  that 

p , ( n ) = h ( n L + p ) ,  for p = O , 1 , 2 ; - * , L -   l a n d a l l n  

(58) 

For each new input sample x ( n )  there  are L output samples 
(see Fig. 14). The  output  from  the  upper  path y o ( m )  has non- 
zero values for m = nL, n = 0, f l ,  22, . . . , which correspond 
to system outputs y ( n L ) ,  n = 0, f l ,  . . . The  output  from  the 
n e x t p a t h y l ( m ) i s n o n z e r o f o r m = n L + 1 , n = O , f 1 , f 2 ; - .  

 DELAY = 4 / 3 4  

W 

(b) 
Fig. 15. Illustration of the properties of polyphase networks. 

because of the delay of one  sample at  the high  sampling rate. 
Thus yl(m) corresponds to  the interpolation  output samples 
y ( n L  + l), n = 0, f l ,  * . In general the  output sf the  pth 
path, y p ( m )  corresponds to  the  interpolation  output samples 
y (nL  + p ) ,  n = 0, +1, * * . Thus  for  each  input samplex(n) 
each of the L branches of the polyphase  network  contributes 
one  nonzero  output which  corresponds to one of the L out- 
puts of the  network.  The  polyphase  interpolation  network of 
Fig. 14(a)  has  the  property  that  the filtering is performed at 
the  low sampling rate  and  thus  it is an  efficient  structure. A 
simple manipulation of the structure of Fig. 14(a) leads to  the 
equivalent  network of Fig. 14(b)  in which all the delays are 
single sample delays. 

The individual  polyphase  filters p , (n ) ,  p = 0, 1, 2, * - * , L - 1 
have a  number of interesting  properties.  This is a  consequence 
of the  fact  that  the impulse  responses p p ( n ) ,  p = 0, 1, 2, * * * , 
L - 1,  correspond to decimated versions of the impulse re- 
sponse of the  prototype  filter h(m) (decimated  by  a factor of 
L according to  (56)  or  (58)). Fig. 15 illustrates  this for  the 
case L = 3 and  for an FIR  filter h(m) with N = 9 taps.  The 
upper  figure shows the samples  of h(m) where it is assumed 
that h(m) is symmetric  about m = 4.  Thus h(m) has  a  flat 
delay of 4 samples [ 171.  The  filter p o ( n )  has  three samples 
corresponding to h(O), h ( 3 ) ,  h(6) = h(2). Since the  point of 
symmetry of the envelope of p o ( n )  is n = 4 it has  a  flat  delay 
of 4 samples.  Similarly pl(n) has samples h(l),  h(4),  h(7) = 
h (  l) ,  and because its  zero reference (n = 0) is offset by 4 
sample (with respect to m = 0) it  has a  flat  delay of 1  sample. 
Thus different  fractional  sample delays and  consequently 
different phase shifts  are associated with the different  filters 
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Fig. 1 6. Ideal frequency response of the polyphase networks. 
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Eig. 17. Polyphase structure for an M to 1 decimator. 

p,(n) as seen in Fig. 15(b).  These  delays are compensated  for 
by the  delays  which  occur  at  the high sampling rate LF in the 
network (see Fig. 14).  The fact  that different phases are 
associated with  different paths of the  network is, of course, 
the reason for  the  term  polyphase  network. 

A second  property of the  polyphase filters is shown in 
Fig. 16.  The  frequency  response of the  prototype filter h ( m )  
approximates  the  ideal low-pass characteristic &elw)  shown  in 
Fig. 16(a).' Since the  polyphad filters p,(n)  are decimated 
versions of h ( m )  (_dec*ated  by L )  the  frequency  response 
o < .a, < n/L of H ( e J W )  scales to  the Tange o G a' Q n for 
Fe(eJw ) as seen in Fig. 16  where pp ( e l W  ) is the ideal  char- 
acteristic that  the  polyphase  filter p , (n )  approximates.  Thus 
the  polyphase  filters  approximate all-pass functions  and  each 
value of p ,  p = 0, 1, 2, * , L - 1, corresponds to a different 
phase shift. 

The  polyphase  filters can be realized in a variety of  ways. If 
the  prototype filter h ( m )  is an FIR  filter of length N then  the 
filters p , (n )  will  be FIR  filters of length NIL. In this case it is 
often  convenient to choose N to be a  multiple of L so that all 
of the  polyphase  filters  are of equal  length.  These  filters  may 
be realized by any of the  conventional  methods  for  imple- 
menting  FIR  filters such as the direct  form structure  or  the 
methods based on fast  convolution [ 171, [ 241. If a direct 
form  FIR  structure is used for  the  polyphase  filters,  the 
polyphase  structure of  Fig. 14 will require  the same multipli- 
cation  rate as the direct  form interpolator  structure of  Fig. 13. 
Exploiting  symmetry  in h ( m )  is more  difficult  in this class  of 

polator which we have ignored in this discussion (see Section 11-B). 
'Recall also that there is an additional gain of L required in the inter- 
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Rg. 18. Commutator model  for  the 1 to L polyphase  interpolator. 

structures since, at  most,  only  one of the p, (n)  subfilters  are 
symmetric. 

By transposing  the  structure of the  polyphase  1 to L inter- 
polator of  Fig. 14(b), we get the  polyphase M to 1  decimator 
structure of  Fig. 17  where L is replaced by M. Again the 
fiitering  operations of the  polyphase  filters  occur  at  the  low 
sampling rate side of the  network  and  they can be imple- 
mented  by  any of the  conventional  structures discussed above. 

In  the above discussion for  the  1  to L interpolator we have 
identified the coefficients of the  polyphase filters p p ( n )  with 
the coefficient  sets g,(n) of the time-varying fiiter  model.  In 
the case of the M to 1  decimator,  however, this identification 
cannot be made  directly.  According to the time-varying filter 
model, discussed in  Section 11, the coefficients g m ( n )  for  the 
M to 1  decimator  are 

g,(n)  = g ( n )  = h ( n ) ,  for all n and m. (59) 

Alternatively,  according to  the  transpose  network of  Fig. 17, 
the coefficients of the M to 1  polyphase  decimator are 

p,(n)=h(nM+p),  for p = O ,  1 ,2 ; - - ,M-   1 , anda l ln  

(60) 

where p denotes  the pth polyphase  filter. Thus the  polyphase 
filters p, (n)  for  the M to 1  decimator  are  equal to  the  time- 
varying coefficients g,(n) of the  transpose  (interpolator)  of 
this decimator. 

From  a  practical  point of  view it is often  convenient to 
implement  the  polyphase  structures  in  terms of a  commutator 
model. By careful  examination of the  interpolator  structure 
of Fig. 14  it can be seen that  the  outputs of each of the  poly- 
phase branches  contributes samples of y (m) for different  time 
slots.  Thus the  1 to L sampling rate  expandv  and  delays can 
be replaced by a  commutator as shown in Fig. 18.  The 
commutator  rotates  in  a  counterclockwise  direction starting 
with  the  zeroth-polyphase  branch  at  time m = 0. 

A similar commutator  model can be developed for  the M to 
1  polyphase  decimator by starting  with the  structure  of 
Fig. 17 and replacing the  delays  and M to 1 sampling rate 
compressors  with  a  commutator.  This  leads to  the  structure  of 
Fig. 19. Again the  commutator  rotates in a  counterclockwise 
direction  starting  with  the  zeroth-polyphase  branch  at  time 
m = 0. 

At this point  the  reader  should be cautioned  that an alter- 
nate  formulation of these  polyphase  structures can be  devel- 
oped  such  that  the  commutators have clockwise rotations  and 
a different but  equivalent  set of polyphase  filters are defined.' 

'This alternate formulation can be developed  by defining a set of 
polyphase filters such that p is replaced by -p on  the right-hand side 
of (58). 



CROCHIEBE AND  RABINER: INTERPOLATION AND DECIMATION OF SIGNALS 311 

F b h-c(" 

Fig. 19. Commutator  model  for  the M to  1 polyphase  decimator. 
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(b) 
Fig. 20. Possible realization of an L/M sampling  rate  converter. 

Both  formulations have  been  used in the  literature  and  they 
should not be confused. 

D. FIR  Structures  with  Time-Varying  Coefficients  for 
Interpolation/Decimation by a  Factor of   L /M 

In  the previous two sections we have considered  implementa- 
tions of decimators  and  interpolators using the direct  form  and 
polyphase  structures  for  the case  of integer changes in the 
sampling rate.  Efficient  realizations of these  structures were 
obtained by commuting  the filtering  operations to occur  at  the 
low  sampling  rate. For  the case of a  network  which realizes a 
change in  sampling rate by a factor of L/M,  it is difficult to 
achieve such efficiencies. The  difficulty is illustrated  in Fig. 
20. If  we realize the 1 to L interpolation  part of the  structure 
using the  techniques described earlier, then we are  faced  with 
the problem of commuting  the M to 1  sampling  rate  com- 
pressor into  the resulting  network  (Fig.  20(a)). If  we realize the 
decimator  part of the  structure first,  then the 1 to L sampling 
rate  expander  must be commuted  into  the  structure (Fig. 
20 (b)). In both cases difficulties arise and we are  faced  with  a 
network which cannot be implemented  efficiently  simply 
using the  techniques of commutation  and transposition. 

Efficient  structures  exist  for  implementing  a  sampling  rate 
converter  with  a  ratio in sampling rates of L/M, and  in this 
section we discuss one  such class of FIR  structures  with time- 
varying  coefficients [ 131.  This structure can be derived from 
the  time  domain input-toautput relation of the  network, as 
derived in  Section 11, namely 

d m  0 4 2 3 4 5 6  

0 t 2 3 4 

(b) 
Fig. 21. Timing relationships  between y ( m )  and x ( n )  for the case 

M =  2,L = 3. 

where 

g,,, (n) = h(nL + mM 0 L), for all m and all n (62) 

and h(k) corresponds to the low-pass (or bandpass) FIR  proto- 
type  filter. It will  be convenient for  our discussion to assume 
that  the  length of the filter h ( k )  is a  multiple of L ,  i.e., 

N =  QL (63) 

where Q is an  integer.  Then all of the coefficient setsg,,,(n), 
m = 0, 1,  2, - * , L - 1  contain exactly  Q coefficients.  Further- 
more g,,, ( n )  is periodic  in m with  period L ,  i.e., 

g,, ,(n)=g,, ,+,L(n),  r=O,+ l , f2 ;* .  . (64) 

Therefore,  equation (61) can  be expressed as 

Equation (65) shows that  the  computation of an  output 
sample y ( m )  is  obtained  as  a weighted sum of Q sequential 
samples of x ( n )  starting  at  the x( [mM/LI  ) sample  and going 
backwards  in n sequentially. The weighting coefficients  are 
periodically  time varying so that  the m 0 L coefficient set 
gmeL(n) ,  n = 0, 1,  2, . * , Q - 1, is used for  the  mth  output 
sample. Fig. 21 illustrates this timing  relationship for  the 
n = 0 term in (65)  and  for  the case M = 2  and L = 3.  The  table 
in Fig.  21(a) shows the  index values of y ( m ) , x ( [ m M / L l )  and 
gmeL(0) for m = 0, to m = 6 .  Fig. 21(b) illustrates the relative 
timing  positions of the signals y ( m )  and x ( n )  drawn  on an 
absolute  time scale. By comparison of the  table  and  the figure 
it can be seen that  the value x (   [ m M / L  1 ) always  represents the 
most  recent available sample of x @ ) ,  i.e., y ( 0 )  and y (  1)  are 
computed  on  the basis of x ( 0  - n ) .  Fory(2) the most  recent 
available  value  of x ( n )  is x( l ) ,  fory(3)  i t  is x ( 2 ) ,  etc. 
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DIGITAL K X D  

F (L/M)F 

Fig. 22. Efficient structure for realizing an L/M sampling rate 
converter. 

STATE  -VARIABLE ww 
BUFFER go(n’)  g,(n’) 

(9 SPJAPLES) 
COEFFICIENT  STORAGE 

(L SETS OF 0 SAMPLES I 

Fig. 23. Diagram of a program structure to implement  the  flowgraph of 
Fig. 22 in a block-by-block manner. 

Based on (65) and  the above description of how the  input, 
output, and  coefficients  enter into  the  computation,  the 
structure of Fig. 22 is suggested for realizing an L/M sampling 
rate converter.  The  structure  consists of: 

1)  a Q sample  “shift  register”  operating  at the  input sam- 
pling rate F which  stores  sequential  samples of the  input 
signal; 

2) a  direct  form FIR  structure with  time-varying  coeffi- 
cients (gm.L(n), n = 0, 1, * * , Q - 1) which operates  at 
the  output sampling rate (L/M)F; 

3) a series of digital  “hold-and-sample”  boxes  which  couple 
the  two sampling rates. The  input side of the  box “holds” 
the most  recent input value until  the  next  input value 
comes  along; the  output side of the box “samples” the 
input values at times n = mM/L. For times when mM/L 
is an integer (i.e., input  and  output sampling  times  are the 
same), the  input changes  first  and the  output samples the 
changed input. 

It  should be clear that  the  structure of Fig. 22 is an efficient 
one  for  implementing  an (L/M) sampling  rate  converter since 
the filtering  operations  are all performed at  the  output sam- 
pling  rate  with the minimum  required  number of coefficients 
used to  generate  each output. 

Fig. 23 shows  a diagram of a  program  configuration to 
implement this structure in a  block by block  manner.  The 

program  takes in a block of M samples of the  input signal, 
denoted as x ( n ’ ) ,  n‘ = 0, 1, 2, * - , M - 1,  and  computes  a 
blockofLoutputsamplesy(m’)m‘=O,1,2;--,L- 1. For 
each output sample  time m’,  m’ = 0, 1, - * , L - 1,  the Q 
samples  from the state-variable  buffer  are  multiplied respec- 
tively with Q coefficients  from  one of the coefficient  sets 
gml(n’ )  and the  products are  accumulated to  give the  output 
y ( m ‘ ) .  Each  time the  quantity lm‘M/LI increases  by  one, 
one  sample  from the  input  buffer is shifted into  the  state- 
variable  buffer. (This information  can be stored in a  control 
array.)  Thus  after L output values are computed M input 
samples have been  shifted into  the state-variable  buffer  and the 
process  can be repeated for  the  next block of data. In the 
course of processing  one  block of data (M input samples and 
L output samples) the state-variable  buffer is sequentially 
addressed L times and  the coefficient  storage  buffer is sequen- 
tially  addressed  once. A program which performs this 
computation  can be found  in [ 251. 

E. Comparisons of Structures 
In this section we have discussed three  principle classes of 

FIR  structures  for decimators  and  interpolators. In addition, 
in  Section V we discuss multistage cascades of these  structures 
and  show  how this can lead to additional g a i n s  in  computa- 
tional  efficiency  when  conversion  ratios  are  large. A natural 
question to ask at  this  point is which of these methods is most 
efficient?  The  answer,  unfortunately, is nontrivial  and is 
highly  dependent  on  the  application being considered.  Some 
insight  and  direction,  however,  can be provided by observing 
some  general  properties of the above classes of structures. 

The direct  form  structures have the advantage that  they can 
be easily modified to  exploit  symmetry in the  system  function 
to gain an  additional  reduction  in  computation  by a factor  of 
approximately  two.  The  polyphase  structures have the advan- 
tage that  the filters p, (n)  can be easily realized  with  efficient 
techniques  such as the fast  convolution methods based on  the 
FFT [ 241. As such  this structure has  been  found  useful  for 
fiiter  banks [ 231. The  structures  with  time-varying  coeffi- 
cients  are  particularly  useful  when  considering  conversions by 
factors of L/M. 

There  are  many  other considerations  which  determine over- 
all efficiency of these  structures. Most  of these  considerations, 
however,  are  fiiter design ones  and  hence we must  defer 
further comparisons of single stage structures  for  decimators 
and  interpolators  until we have discussed the filter design 
issues in  some  detail. 

w. DESIGN OF FIR FILTERS FOR 
DECIMATION AND INTERPOLATION 

In the discussion in the previous  chapters we have assumed 
that  the  filter h ( k )  approximates  some  ideal low-pass (or 
bandpass)  characteristic  (see Figs 2-4). As such the effective- 
ness of these  systems is directly  related to  the  type and  quality 
of design of this digital  fiiter.  The  purpose of this section is to  
review digital  filter design techniques,  and discuss those 
methods  that are  especially  applicable to  the design of the 
digital  filter  in sampling rate changing  systems. 

The filter design problem is essentially  one of determining 
suitable values of h ( k )  to  meet given performance  specifica- 
tions  on  the  filter.  Such  performance  specifications  can be 
made on  the time  response h ( k ) ,  or  the frequency  response of 
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the filter H(eiW) defined  as 

H(eiw)=  h(k)e-jwk 
m 

(66) 
&=-m 

=H(z)l,=,jw.  (67) 

The  frequency  response is, in  general,  a  complex  function  of 
o. Thus  it is convenient to represent it  in  terms of its magni- 
tude IH(eJW)I and phase e(w) as 

H(eiw) = IH(eiw)Ieie(w)  (68) 

where 
IH(eiW)I = dRe2  [H(e iw)]  + Im2  [H(eiw)l  (69a) 

An important filter  parameter is the group  delay T ( O )  de- 
fined as 

The  group  delay is a  measure of time  delay  as  a  function  of 
frequency of a signal as it passes through  the filter.  Nondisper- 
sive filters have the  property  that 7(0) is a  constant (Le., a 
fixed  delay) over the frequency range of interest. 

Before  proceeding to a discussion of filter design techniques 
for  decimators  and  interpolators,  it is important  to consider 
the ideal  frequency  domain and time  domain  criteria that 
specify  such designs. It is also important  to consider, in more 
detail, the  representation of such  filters in terms of a single 
prototype filter or as a  set of polyphase  filters.  Although both 
representations  are  equivalent,  it is sometimes easier to  view 
filter design criteria  in  terms of one  representation or  the 
other. Also, some  filter design techniques  are  directed  at the 
design  of a single prototype filter  such  as  in the classical filter 
design methods,  whereas  other  filter design techniques  are 
directed at  the design of the polyphase  filters. Thus we will 
consider both representations in this section. 

A .  Relationship  Between  the  Prototype  Filter  and  its 
Polyphase  Representation 

As discussed in  Section 111, the coefficients,  or  impulse 
responses, of the polyphase  filters  correspond to  sampled  (and 
delayed)  versions of the impulse  response of the  prototype 
filter.  For  a  1 to L interpolator  there  are L polyphase  fiiters 
and  they  are  defined as (see Fig. 15). 

p , ( n ) = h ( p + n L ) ,   p = O , l , 2 ; . * , L -   1 , a n d a l l n .  

(71) 

Similarly  for an M to 1  decimator  there  are M polyphase  fiiters 
in  the polyphase  structure  and  they  are  defined  as 

p , (n )=h(p+nM) ,   p=0 ,1 ,2 ; . . ,M-   1 , anda l ln .  

(72) 

Taken  as  a set,  the samples p,(n) ( p  = 0, 1, * - * , L - 1  for an 
interpolator,  or p = 0, 1, * , M - 1  for  a decimator)  represent 
all of the samples of h(k). Since the development of the filter 
specifications is identical  for both cases (1  to L interpolators 
and M to  1 decimators) we will only  consider the case of inter- 

polators.  The  results  for  decimators can then simply be 
obtained by replacing L by M in  the  appropriate equations. 

The  samples h(k) can be recovered from p,(n) by sampling 
rate  expanding the sequences pp(n) by a  factor L .  Each ex- 
panded  set, is then  delayed  by p samples  and the L sets are then 
summed to give h (k) (the reverse operation to  that of Fig. 15). 
If  we let $p(k )  represent the sampling  rate  expanded  set 

Fp(k )  = 
pp(k/L), k = 0, + L ,  + 2 L ,  * - 

(73) 
otherwise 

then h(k) can be reconstructed  from $,,(k) via the summation 

The  z-transform H(z) of the  prototype  fiiter can similarly be 
expressed  in  terms of the z-transforms of the polyphase  filters 
Pp(z).  It can be shown that 

H(z) = z-pPp(zL). 
L-1 

p = o  
(7.5) 

Finally,  the  z-transform Pp(z), can be expressed in terms  of 
H(z) according to  the following  derivation. If we define  a 
sampling function Sp(k), such that 

then  the sampling rate expanded  sequences sp(k) in  (73) can 
be expressed as 

1 L-1 
$&) = S P ( k )  h(k) E h(k) y ei2n1(k-p)lL.  (77) 

1=0 

The  z-transform  Pp(z) can then be expressed in the  form 

and by the  substitition of variables k = p + nL, 

(79) 

By substituting  (77)  into  (79) we get 

k &=-m 1=0 

Letting  z = eiw and rearranging  terms gives 

l=o &=-m 

1=0 

p = 0, 1,2, .  - - , L  - 1. (81) 
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Equation  (81) shows the relationships of the  Fourier trans- 
forms of the polyphase  filters to the  Fourier  transform of the 
prototype filter. 

Equations (71)474), therefore,  illustrate the  timedomain 
relationships  between h ( k )  and p p ( k )  and (75) and  (81) show 
their  frequencydomain relationships. 

B. Ideal  Frequency  Domain  Characteristics for 
Interpolation and Decimation  Filters 

In the previous sections we  have  assumed that  the filter 
h(k)  approximates  some  ideal low-pass (or bandpass)  char- 
acteristic. We will elaborate  on  these “ideal” characteristics 
in somewhat  more  detail  in the  next  two sections. In practice 
it is also necessary to specify  a  performance  criterion to mea- 
sure. (in a  consistent  manner)  how closely  an actual  filter 
design approximates this ideal  characteristic. Since different 
design techniques  are  often based on different  criteria, we  will 
consider  these  criteria as they arise. 

Recall from  the discussion in  Section 11-B that  the  interpolator 
filter h(k)  must  approximate  the ideal4  low-pass characteristic 

as illustrated  in Fig. 3. 
By applying (82) to (81)  it .is possible to derive the equiva- 

lent  ideal  characteristics, FPp(elw 1, that are  implied  in the poly- 
phase  filters.’  Because of the  constraint imposed by (82), 
only the 1 = 0 term  in  (81) is nonzero  and  thus it simplifies 
to  the form 

= e j w p J L ,  p = O , l , 2 ; . . , L -  1. (83) 

Equation  (83) shows that  the “ideal” polyphase  filters 5 p ( n )  
should  approximate all-pass fiters with  linear phase shifts 
corresponding to fractional  advances of p / L  samples ( p  = 0, 1, 
2, * , L - 1)  (ignoring  any  fixed  delays that  must be intro- 
duced in practical  implementations of such  filters). A further 
interpretation of the reason for this phase  advance  can  be found 
in Section 111-C on  the discussion  of polyphase  structures. 

In  some cases it is known that  the  spectrum of x ( n )  does not 
occupy  its  full  bandwidth. This property can be used to 
advantage in  the  filter design and we  will  see examples of this 
in the next  section on cascaded (multistage)  implementations 
of sampling rate changing  systems..  If we define o, as the 
highest frequency of interest in X ( e l W ) ,  i.e., 

I X ( e j w ) I < e ,  for n > ~ o ~ > w ,  (84) 

where E is.a ;mall quantity (relative to the peak of IX(e lw) l ) ,  
then W(eJW ) is an L-fold periodic  repetition of X ( e l W )  as 
shown in Fig. 24  (for L = 5). In this case, the ideal  inter- 
polator  filter.only  has to remove the ( L  - 1) repetitions of the 
band of X ( e l w )  where IX(eiW)I > E .  Thus in the  frequency 

variable throughout  this  section. 
‘The  “ideal”  characteristic  for  a  fitter is denoted by a  tilde over the 

sampling  rate,  the  frequency variable (in (82) for example) is w’, 
’Since  the  conventional  fdter h(m) is implemented at the higher 

whereas since  the  polyphase  fitters are implemented  at  the lower sam- 
pling rate,  the  frequency variable is w = w’L. 

d d 

Fig. 24. Illustrations of @ bands in  the  specification of an interpolator 
fitter (L  = 5). 

domain,  the ideal  interpolator  filter satisfies the  constraints 

f 0 Q IW’l  Q o,/L 

f i ( e j W ’ )  = 0, (2nr - o,)/L < I W ‘ I  ~ ( 2 . 7 ~  + O J L ,  

r = l , 2 ; - . , L -  1 (85) 

as illustrated  in Fig.  24(c). The bands  from (2717 + w,)/L to 
(2n(r + 1) - w,)/L, (r  = 0, 1, - * -) are  “don’t  care” (4) bands 
in which the filter  frequency response, is essentially uncon- 
strained.  (In  practice,  however, IH(elW )I should not be  very 
large in  these 4 bands, e.g., not larger than L ,  to avoid  amplifi- 
cation of any noise (or tails of X ( e i W ) )  that may  exist  in  these 
bands). We will  see later  how  these 4 bands  can have a signif- 
icant  effect on the filter design problem. Fig. 24(d)  shows the 
response of the ideal  polyphase  fiiter which is converted  from 
an allpass to a low-pass filter  with  cutoff  frequency o,. Of 
course, the phase response of each  polyphase  filter is unaltered 
by the don’t care bands. 

As. !iscussed in  Section 11-A for a  decimator, the  filter 
H(eIW ) should  approximate  the  ideal low-pass characteristic 

Alternatively, the polyphase  filters  should  approximate the 
ideal allpass characteristics 

(87) 

If we are  only  interested  in  preventing aliasing in a  band 
from 0 to w,, where O, <?TIM, and we are willing to tolerate 
aliased components  for frequencies above a,, then we again 
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have a  situation  where don’t care  bands  are  permitted  in  the 
filter design. The don’t care regions  are the same as those  in 
(85) as illustrated in Fig. 24(c)  (with  L  replaced  by M). In 
fact all of the  frequencydomain  constraints  that  apply to the 
design of interpolation  filters also apply to  the design of 
decimation  filters,  a  consequence of the  property  that  they 
are  transpose  systems. 

C. Time-Domain  Properties of Ideal  Interpolation  and 
Decimation  Filters 

If  we view the  interpolation filter design problem  in the  time 
domain, an alternative  picture of the “ideal” interpolation 
filter is obtained. By taking the inverse transform of the 
ideal  filter  characteristic  defined  by (82) we get the well- 
known  sin(x)/x characteristic 

In a similar manner we can determine  the ideal  time responses 
of the polyphase  filters,  either  by  taking the invzrse transform 
of (87),  or by sampling the above  time  response  h(k)  according 
to (71).  The  net  result is that  the ideal  time responses of the 
polyphase  filters  are 

A number of interesting  observations  can be made  about  the 
above ideal  time responses. First we see that  they  constrain 
every Lth value of X(k) such  that 

6(k) = t 1, k = O  

0, k=rL , r=+1 ,?2 ; ’** .  

Alternatively,  this  implies the  constraint  that  the  zeroth-poly- 
phase filter have an  impulse  response that is a  unit  pulse, i.e., 

&(n)  = N n ) ,  for all n .  (91) 

In  terms of the polyphase structure of Fig. 14 and its signal 
processing interpretation of Fig. 15,  the above  constraint is 
easy to visualize. It simply  implies that  the  output y o ( m ) ,  of 
the  zeroth polyphase  branch is identical to the  input  x(n) 
filled  in  with  L - 1  zeros, i.e., these  sample values are  already 
known.  The  remaining  L - 1  samples in between  these values 
must be interpolated  by  the polyphase  filters p,(m),  p = 1, 
2, * . - , L - 1. Since these  filters  are  theoretically  infinite  in 
duration,  they must be approximated,  in  practice,  with  finite 
duration  filters.  Thus the  interpolation  “error”  between  the 
outputs of a  practical  system  and  an ideal system  can be zero 
for m = 0, +L,  +2L, . * . However “in-between”  these 
samples, the  error will always be nonzero. 
By choosing  a design that  does  not specifically satisfy the 

constraint of (90)  or  (91) a  tradeoff  can be made  between 
errors  that  occur  at  sample  times m = 0, *L, +2L, * * and 
errors  that  occur between  these samples. 

Another  “timedomain”  property  that can be  observed is 
that  the ideal filter 6(k) is symmetric  about  zero, i.e., 

X(k) = X(- k). (92) 

(Alternatively, for practical  systems it may be symmetrical 

about some  fixed  nonzero delay.) This  symmetry  does  not 
necessarily extend  directly to the-polyphase filters  since they 
correspond to sampled  values of h(k)  offset by some  fraction 
of a  sample.  Their envelopes, however,  are  symmetrical (see 
Fig. 15). 

The above symmetry  property  does,  however,  imply  a  form 
of mirror image symmetry  between  pairs of polyphase  filters 
Fp(n) and z L - p ( n ) .  Applying (92) to (71) gives 

pSp(n) = 6(-p - nL)  

= X ( L  - p - (n + 1 ) ~ ) .  (93 1 
Also noting  that 

FL-p(n)  = X(L - p + nL) (94) 

it can  be  seen that  this  symmetry is of the  form 

Fp(n) = FLL-p(-n - 1).  (95) 

In the case  of decimators it is not possible to identify  the 
outputs of specific polyphase  branches  with specific output 
samples of the  network. All branches contribute to each out- 
put. Thus it is not as convenient to give meaningful time 
domain  interpretations to the  operation of the filter  in  a 
decimator. 

The  ideal  time responses for  %(k)  and c p ( n )  for decimators, 
however, are  the same as those of (88)  and  (89), respectively, 
with L replaced  by M. 

D. Filter  Design  Procedures 
In the remainder of this  section we will discuss a  number of 

filter design procedures  which  apply to  the design of multirate 
systems.  Since the filter design problem for such  systems 
generally is a low-pass (or  bandpass) design problem, nearly all 
of the work in digital signal processing filter theory can  be 
brought to bear on this  problem. We will not  attempt  to dis- 
cuss all of these methods in  detail, since they are well docu- 
mented elsewhere [ 1 1 1, [ 171, but  rather we  will try to point 
to  the relevant issues  involved in these designs that particularly 
apply to multirate  systems. 

We will discuss five main  categories of filter design proce- 
dures,  namely: 

1) window designs [ l l ] ,  [171,  1261; 
2)  optimal,  equiripple  linear phase  designs [ 271 -[30] ; 
3) half-band designs [ 3  1  ] -[ 331 ; 
4) special FIR  interpolator designs  based on  time domain 

filter  specifications [ 341 -[ 381, or  stochastic  properties 
of the signal [ 391 ; 

5)  classical interpolation designs, namely  linear  and Lagrang- 
ian interpolators [ 41, [ 161. 

E. FIR  Filters  Based on  Window  Designs 
One straightforward  approach to designing FIR filters for 

decimators  and  interpolators is by the well-known megod of 
windowing or  truncating  the ideal prototype response  h(k). A 
direct  truncation (i.e., a  rectangular  windowing of X(k)), how- 
ever, leads to the Gibbs  phenomenon which manifests itself as 
a large (9  percent) ripple  in the  frequency behavior  of the 
filter in  the vicinity of filter  magnitude  discontinues (i.e., near 
the edges of the passband and stopband).  Furthermore,  the 
amplitude of this  ripple  does not decrease with increasing 
duration of the filter  (it  only  becomes  narrower  in  width). 
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Fig. 25. Illustration of a tolerance  scheme  for a  practical low-pass  fflter. 

Thus a  direct  truncation, or a  rectangular  windowing, of &k) 
is rarely used in practice. 

A more successful  way of windowing the ideal characteristic 
X(k) is by more  gradually  tapering its  amplitude to zero  near 
the ends of the filter  with  a weighting sequence w (k) known as 
a window. The resulting  filter design h ( k )  is thus  the  product 
of the window w ( k )  with the ideal response h ( k ) ,  i.e., 

h (k) = %(k) w (k), - (N - 1)/2 < k < (N - 1)/2  (96) 

where we assume that w ( k )  is a  symmetric  N-point (N  odd) 
window. A number of windows have  been proposed  in the 
literature  for controlling the  effects of the Gibbs  phenomenon, 
and  their  properties  are well understood [ 111, [ 171,  [26]. 
Two  commonly used types of windows  are the “generalized” 
Hamming windows  and the Kaiser  windows. 

The window designs  have the  property  that  they preserve the 
zero crossing pattern of X(k) in the actual  filter design h ( k ) .  
Thus if z(k) is obtained  from  (88),  then  the  time-domain 
properties discussed in  Section IV-C apply to this class of 
filters. 
’ Among the advantages  of the window design approach is 
that  it is simple, easy to use, and  can  readily be implemented 
in a  direct  manner (i.e.,  closed form  expressions  are available 
for  the window  coefficients,  hence the filter responses  can  be 
obtained simply from  the ideal  filter  response).  Among the 
disadvantages are that  there is only  limited control in  choosing 
cutoff  frequencies  and passband and  stopband  errors  for  most 
cases. The resulting  filter designs are also suboptimal  in  that a 
smaller  value of N can be found (using other design methods) 
such  that all specifications on  the filter  characteristics  are 
met  or exceeded. 

F. Equiripple  (Optimal) FIR Designs 
The windowing technique of the previous section  represented 

a simple straightforward  approach to  the design of the digital 
filter  required in all sampling rate conversion systems. How- 
ever considerably  more  sophisticated design techniques have 
been  developed for  FIR digital filters ’[ 1  1 1 ,  [ 271 -[ 301.  One 
such  technique is the  method of equiripple design  based on 
Chebyshev approximation  methods.  The  filters designed by 
this technique  are  optimal  in  the sense that  the peak  (weighted) 
approximation  error  in  the  frequency  domain over the fre- 
quency range of interest is minimized. 

To apply the  method of equkipple design to  the digital filter 
required for sampling rate conversion,  a  tolerance  scheme on 

the  filter  must be defined. Fig. 25 shows an  example of a 
tolerance  scheme  for  a low-pass Titer  where 

ripple  (deviation)  in the passband from  the ideal  re- 

ripple  (deviation)  in the  stopband  from  the ideal  re- 

passband  edge frequency = o,/2n 
stopband edge frequency = oJ2n 
number of taps  in  the  FIR  filter. 

sponse 

sponse 

Alternatively, Fig. 26  shows  a  practical  tolerance  scheme for 
a  multistopband design  of a  1 to L interpolator when it is 
known  that  the  input  spectrum does not  occupy  its  full  band- 
width (see Section IV-B and Fig.  24). 

Given the tolerance  schemes of Figs. 25  or  26,  it is a simple 
matter to set up  a  filter  approximation  problem based on 
Chebyshev approximation  methods. Several  highly  developed 
techniques have been  presented in  the  literature  for solving the 
Chebyshev  approximation  problem [27] -[ 291,  including  a 
well documented, widely  used computer  program  [301.  The 
solutions  are based on  either a  multiple  exchange  Remez algo- 
rithm,  or a single exchange  linear  programming  solution. We 
will not be concerned  with  details of the various solution 
methods. 

For  the case  of the low-pass characteristic of  Fig. 25 an em- 
pirical formula  has been  derived that relates the f i ter  param- 
eters.  It can be  expressed in the  form 

and where u l  = 0.00539, az = 0.07114, a3 = -0.4761, 

Although the design relationships of (97)-( 101) appear  com- 
plex,  they are fairly  simple to apply. By way of example, 
Fig. 27  shows  a series of plots of the  quantity Dm(&,  ,6,) as a 
function of 6, for several  values of 6,. Through the use of 

U 4  = -0.00266, U s  = -0.5941,  and U 6  = -0.4278. 
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Fig. 27. Plot of D,(6,, 6,) for practical  values of 6, and 6,. 

either  the  analytic  form (e.g., (97))  or  from widely  avail- 
able design charts  and  tables,  it is a simple matter  to  determine 
the value  of N needed for  an  FIR low-pass filter to meet  any 
set of design specifications [ 1  1 ] , [ 381 . 

The  above design relationships  are for low-pass filters. How- 
ever, as shown  in Fig. 24  and  26, digital filters  for  interpola- 
tion  and  decimation  need  not  be  strictly low-pass filters, but 
instead can  also include 4, or don’t care  bands,  which can 
influence the filter design problem.  This is especially true when 
the  total  width of the 4 bands is a significant portion of the 
total  frequency  band.  For  such cases no simple  design formula 
such as (97)  exists which relates the relevant  filter  parameters. 
Thus  the simplest way of illustrating the  effects of the 4 bands 
on  the  filter design problem is by  way of example. 

Consider the design of a  set of interpolators  with specifica- 
tions: 

L = 5  

6, < 0.001 

6, < 0.0001 

O<w,<n 

i.e., the  parameter  that we allow to vary is w, (see Fig. 26). 
First we design a series of low-pass filters  with  passband  cutoff 
frequencies w, = wc/5, and  stopband  cutoff  frequencies 
w, = (277 - w,)/5. Next we design a series of multiband  filters 
with  a single passband  (identical to  that of the low-pass design), 
and  a series of stopbands,  separated  by  don’t  care  bands (see 
Fig. 26). If we compare  the required  impulse  response  dura- 
tion of the lowpass filter to  the required  impulse  duration of 
the  multiband filter we  get a  result of the  type shown  in 
Fig. 28(a)  which gives the percentage decrease in N as a  func- 
tion of o,/n. The heavy dots  shown  in  this  figure  are mea- 
sured values (i.e., they  are  not  theoretical  computations),  and 
the  smooth curve shows the  trend in the  data.  The  numbers 
next  to each heavy dot are the minimum  required  impulse 
response  durations  (in  samples)  for the low-pass, and  multi- 
band designs,  respectively. 

The  trends in the curve are  quite clear. For w,/n close to 
1.0,  there is essentially no gain in designing and using a  multi- 

L.5 
6, 5 0.001 
6, 5 o.ooo1 

:” \ , , 25,2t 

33,31 
M3.101 

0.2 a4 0.6 0.8 0 

We /H 

(a) 
L.40 
sp 5 0.001 

6,s OOOOI 

U C ’ W  

(b) 
Fig. 28. Percentage  decrease in required  fdter  order by using a multi- 

band  design instead of a low-pass design,  as  a function Of wc/n for 
(a) L = 5 and (b) L = 10, respectively. 

band filter  instead  of  a  standard low-pass filter since the  total 
width of the 4 bands is small. However, as w,/n tends  to 0, 
sigmficant reductions  in N are  possible; e.g., for w,/n % 0.05, 
a 50 percent  reduction  in  impulse  response  duration is pos- 
sible. Fig. 28(b) shows similar trends  for a series of inter- 
polators  with  a value of L = 10. 

Figs. 29 and 30 show  typical  frequency  responses  for low-pass 
and  multiband  interpolation  filters.  For  the  example of Fig. 
29(a) the specifications were L = 5 ,  6, = 0.001, 6, = 0.0001, 
and w, = 0 . 5 ~ .  The required values of N were 41 for  the low- 
pass filter,  and 39  for  the  multiband design. Thus  for  this 
case the  reduction in  filter  order was insignificant. However, 
the change in  filter  frequency  response  (as seen in Fig. 29(b)) 
was  highly significant. Fig. 30 shows the same comparisons for 
designs with L = lo ,&,  = 0.001, 6, = 0.0001,  and 0, = 0.5n. 
In  this case a  28-percent  reduction in filter  order  (from 45 for 
the low-pass filter to  33 for  the  multiband  filter) was obtained 
since the  frequency span of the  stopbands was  small compared 
to  the frequency  span of the don’t  care bands.  In both these 
examples we  see that,  in  the 4 bands, the  frequency  response 
of the resulting  filter is truly  unconstrained,  and  can,  in  fact, 
become  extremely large (as  compared to  the passband re- 
sponse). The practical  implication is that some care must be 
taken to ensure that  the  amplitude response  in the 4 bands 
stays below some well  specified level to guarantee that  the 
noise in  the  input signal, in  the 4 bands, is not amplified so 
much that  it becomes excessive in  the  output signal. 

The  above  examples have shown  that when o , /L ,  the  cutoff 
frequency of the passband, is relatively small (compared to 
n/L) ,  significant reductions  in  computation can be  obtained  by 
exploiting the don’t care  bands  in the design of the interpola- 
tion  (or  decimation)  digital  filter. In practice  such  conditions 
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Fig. 29 .  Comparison between (a) low-pass filter, and (b) its equivalent 

multiband design for L = 5.  
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Fig. 30. Comparison between (a)  a low-pass fiter, and (b) its equivalent 

multiband design for L = 10. 

rarely  occur, i.e.,  we are usually  dealing with signals where 
wc/L is relatively large. As such the  question arises as to 
whether the multiband  filter  approach is of practical  utility  in 
the  implementation of digital sampling rate changing  systems. 
We will  see in  Section V that  the techniques discussed here  are 
of value in  multistage  implementation of decimators  and  inter- 
polators involving  large  changes in sampling rates. 

G.  Half-Band  FIR  Filters-A  Special Case of FIR  Designs 
for Conversion by Factors o f  Two 

low-pass filter of Fig. 25. If we consider the special  case 
Let us  again consider the  tolerance specifications of the ideal 

s,=s, = 6  (1 02) 
ws=lr-  up (103) 

then  the resulting  equiripple  optimal  solution to  the  approx- 
imation  problem  has the  property  that 

H ( e i w )  = 1 - H(ei ( l r -W))  (1 04) 

i.e., the  frequency response of the optimal  filter is symmetric 
around w = m/2, and at w = 7712, H ( e I W )  = 0.5. It can  also  be 
readily  shown that any  symmetric  FIR  filter  satisfying  (1 04), 
also satisfies the ideal  time-domain  constraints discussed in 
Section IV-C, equation (go), i.e., every other impulse response 
coefficient  (except for k = 0) is exactly 0. 

Filters designed  using the  constraints of (102)  and  (103) 
have been called  "half-band" filters [3  11-[331,  and  their  prop- 
erties have  been  intensively studied.  They can  be  designed in  a 
variety of ways including the window designs and  equiripple 
designs  discussed  previously. 

H. Minimum  Mean-Square-Error  Design of FIR 
Interpolators-Deterministic Signals 

Thus far we  have considered the design of filters for  inter- 
polators  and  decimators  from  the  point of  view of designing 
the  prototype  filter h ( m )  such  that it satisfies a  prescribed  set 
of frequencydomain specifications.  In the remainder of Sec- 
tion IV we consider  an  alternative  point of  view in designing 
filters  (particularly for integer  interpolators). In this  approach 
the  error  criterion to be  minimized is a  function of the differ- 
ence  between the  actual  interpolated signal and  its ideal value 
rather  than  a  direct  specification on  the filter  itself. We see in 
this  section  and in following  sections that such  an  approach 
leads to a  number of filter design techniques  [341-[371,  [391 
which are  capable of accounting  directly  for  the  spectrum of 
the signal being interpolated. 

Fig. 31(a)  depicts  the basic theoretical  framework used for 
defining the above interpolator  error  criterion. We wish to 
design the  FIR  filter h ( m )  such  that  it can  be  used to inter- 
polate  the signal x ( n )  by  a factor of L with  minimum  inter- 
polation  error. To define  this  error we  need to compare  the 
output of this  actual  interpolator  with  that of an  ideal  (infinite 
duration)  interpolator &(m) whose characteristics were  derived 
in  Sections IV-B and IV-C. This signal error is defined as 

A r ( m )  = y ( m )  - v"(m) (105) 

where y ( m )  is the  output of the actual  interpolator  and p ( m )  
is the ideal output. 

In  this  section we wiU consider  interpolator designs which 
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minimize the mean-square value  of A y ( m ) ,  defined as 

(1  06a) 

= 2~ IAY(eiw') lZ  dw' .  
1 "  

(1  06b) 

Later  in  Section IV-I we will .cqnsider  designs which  minimize 
the  maximum value  of IAY(eIW )I over a  prescribed  frequency 
range,  and  in  Section IV-J we will refer to designs which mini- 
mize the maximum value of I A y  (m))l in the  time domain. 

The above  design problems  are  greatly  simplified by consid- 
ering them  in  the  framework of the polyphase  structures as 
illustrated in Fig. 14. Here it is seen that  the signal y ( m )  is 
actually  composed of interleaved samples of the signals u p  ( n ) ,  
p = 0, 1, 2,  + * , L - 1, as shown by Fig. 3 l(b), where u p ( n )  is 
the  output of the  pth polyphase  filter. Thus the  erron intro- 
duced  by  each  polyphase  branch  are  orthogonal to each  other 
(since they  do  not coincide in time)  and we  can define the 
error  in  the  pth  branch as the error  between the  actual  output 
and  the  output of the  pth branch of an  ideal  polyphase  inter- 
polator as shown in Fig. 31(b), i.e., 

A u p  (n) = u p  ( n )  - i i p  ( n ) .  (107) 

Because  of this  orthogonality  property we  can separately 
and independently design each of the polyphase  filters for 
minimum  error  and arrive at  an overall interpolator design 
which  minimizes the error ( 1  A y  (m)ll. Thus a large (multirate) 
filter design problem can  be broken  down into L smaller  (time- 
invariant)  filter design problems. 

In  the case  of the mean-square-error  criterion it can be seen 
that 

1 L-1 
E' = IlAy(m)ll' =- E: (1 08a) 

p = o  

where 

E: = IIAup (n)l12. (1 08b) 
To minimize E' we then need to design L independent  poly- 
phase filterspp ( n ) ,  p = 0, 1, 2, * * - , L - 1,  whichindependently 
minimize the respective mean-square  errors E : .  

In order  to analytically  set up  the filter design problem, it 
can  be noted  that  the ideal  polyphase  filter  response is 

(109) 
which then leads to  the form 

E: = IIAu, (n)1I2 

l n  =zL lPp (e'") - 1' IX(ei")12 d o .  

(1 10) 

Equation  (1  10) reveals that  in  the minimum  mean-square-error 
design, we are  in  fact  attempting to design a  polyphase fiter 
such  that  the integral of, the squared  difference  between its 
frequency  response P p ( e J W )  and  a  linear  (fractional  sample) 

LbJ-Ay(m) IDEAL INTERPOLATOR - 

PRACTICAL INTERPOLATOR 

(a) 
plhCHANNEC OF IDEAL 

POLYPHASE-INTERPOLATOR 

$rn) 

Ppln) - 
up (n) 

pth CHANNEL OF PRACTICAL 
POLYPHASE INTERPOLATOR 

(b) 
Fig. 31. Framework for deftning  error  criteria for  interpolation  fiiters. 

phase delay eiwpIL, weighted by the  spectrum of the  input 
signal IX(ej")l', is minimized. Note also that  the integral 
from -n to n in  (1 10) is taken over the  frequency range of the 
input signal of the interpolator, not  the  output signal. 

In practice  this  error  criterion is often modified slightly 
[34] -[37], [39]  by specifying that X(ej") is bandlimited to 
the range 0 < o < MI where 0 < a < 1, i.e., 

IX(ej")I = 0, for IWI 2 MI (1 11) 

Then  (1  10) can be expressed as 

1 
E:*(Y 2n -," = - 1 lPp (e'") - e j w p / L  1' IX(ejw)IZ do 

(1  12) 
where the subscript a will be used to distinguish this  norm 
from  the  one  in  (1 10).  Alternatively we  can consider the 
above  modification as a  means of specifying that we want  the 
design  of P p ( e l w )  to be  minimized only over the frequency 
range 0 < o < MI, and that  the range (YII < w < n is allowed to 
be a  transition region. Then CY can be used as a  parameter  in 
the  filter design procedure. 

The  solution to the minimization  problem of (1  12) involves 
expressing the  norm E:, ,  directly  in  terms of the filter  coeffi- 
cients p p  ( n ) .  Then,  since the problem is formulated  in  a clas- 
sical mean-square  sense, it can  be seen that E:,, is a  quadratic 
function of the coefficients p p ( n )  and  thus it has  a single, 
unique  minimum for some optimum choice of coefficients. 
At  this  minimum point,  the derivative of E : , ,  with  respect to 
all of the coefficients p p  ( n )  is zero. Thus  the second step  in 
the solution is to take  the derivative of E:, ,  with  respect to 
the coefficients p p  ( n )  and  set it equal to zero. This leads to a 
set of linear  equations  in  terms of the coefficients p p ( n )  and 
the  solution to this  set of equations gives the  optimum choice 
of coefficients  which  minimize E:,,. This minimization  prob- 
lem is solved for  each value  of p ,  p = 0, 1,2,  e 9 * , L - 1  and 
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each  solution provides the  optimum  solution  for  one of the 
polyphase filters. Finally,  these optimum polyphase  filters can 
be combined, as in (73)-(75), t o  obtain  the  optimum  proto- 
type filter h ( m )  which minimizes the overall norm. The de- 
tails for  this approach  can be found  in [ 351. Also, this same 
reference, or  [40] by Oetken, Parks, and Schuessler, contains a 
computer program which designs minimum mean-square inter- 
polators according to  the above techniques and it greatly sim- 
plifies the task of designing these filters. 

The minimum mean-square-error interpolators designed using 
the procedure described have a number of interesting  proper- 
ties [36]. 

1) The resulting filters have the same symmetry properties 
as the ideal  filters (92)  and (95)). 

2)  The minimum error min E;,& for  the polyphase  filters 
also satisfies the  symmetry  condition 

min = min  EL-^,^. 2 (113a) 

This error increases monotonically as p increases (starting with 
E t , a  = 0) until p = L / 2  at which point it decreases monotoni- 
cally according to (1 13a). Thus  the greatest error occurs in 
interpolating sample values which are halfway between two 
given samples. This normalized error is closely approximated 
by  the sine-squared function [36],  i.e., 

(1  13b) 

3) If an interpolator is designed for a given signal with a 
large value of L ,  all interpolators whose lengths are fractions of 
L are obtained  by simply sampling the original filter, i.e. if we 
design an interpolator  for L = 100,  then for the same param- 
eters cz and  R we can derive from this  filter the  optimum 
mean-square error interpolators  for L = 50,  25,  20,  10,  5, and 
2 by taking appropriate samples (or  appropriate polyphase 
filters). 

Fig. 32 shows an example of the impulse response and fre- 
quency response for a  minimum mean-square-error interpola- 
tion filter  with  parameter values cz = 0.5, N = 49, R = (N - 1)/ 
2L = 3, L = 8, and assuming that IX(eJW)I = 1. 

I .  Design of FIR Interpolators  with  Minimax Error 
in the  Frequency  Domain 

In  the previous section we considered the design of FIR 
interpolators based on minimzing the mean-square error norm. 
In this  section we  will consider another class of designs of +fer- 
polation  filters in which the maximum of the error I A  Y (el" )I 
over the frequency range of interest is minimized. This type 
of design  gives a  greater degree of control over the errors at 
specific frequepcies [36].  In minimax designs  of this type,  the 
error A Y ( e l w  ) oscillates (ripples) in  the frequency  domain 
between positive and negative values of this  maximum error. 
If the  number of taps  in  the overall filter is 

N = 2 R L  + 1 (114) 

then each polyphase filter has 2R  taps and therefore  2R de- 
grees of  f-dpm. These 2R degrees of freedom allow the 
error IAY(eJW )I t o  be exactly  zero at 2R Frequencies or  R 
conjugate pairs of frequencies. Thus A Y ( d W  ) will have R + 1 
extremal values in  the range of positive frequencies 0 < or < 
m / L .  The frequencies at which IAY(eiw )I is zero will be 
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Fig. 32. The impulse  and  frequency responses of a m i n i u m  mean- 
squared error interpolation  fdter  with o! = 0.5, R = 3 ,  and  L = 8. 

denoted as 

O < ' W ~ = W ~ L < ~ ,  X = l , 2 ; . * , R  (115) 

where the reader may recall that o refers t o  frequencies speci- 
fied with  reference to  the low sampling rate and or refers t o  
frequencies specified with  reference to  the high sampling rate. 
From  (1  10)  it  then follows that 

p el";\) = eiWAP/L, for X = 1,2,  - - . , R,  
P (  

a n d f o r   p = 0 , 1 , 2 ; - - , L -  1.  (116) 

Thus. at these  frequencies the polyphase  filter _responses 
Pp(e lwA)  are all equal to  the ideal  filter responses Pp(e lwh) ,  
X = 1 , 2 , * * - , R .  

The above problem has now been converted to  a  problem of 
fiding  the set of R frequencies o h ,  X = 1,2,  - - * , R .  The 
assumption that these  frequencies be distinct is not essential t o  
the validity of the result.  Indeed if we assume that oh = 0 for 
all X and X(:'") = constant  for 101 < m, then all of the zeros 
of IIAY(eiw )It2 occur at a'= 0. , I n  this case we get a maxi- 
mally flat behavior of IIAY(eJW )112 such  that  its f i t  4R 
derivatives with  respect t o  ur are zero. The  solution  then 
leads to  the well-known class of Lagrange interpolators [ 361 . 

For equiripple designs a  procedure for finding the frequen- 
cies o h  has been  proposed by  Oetken [ 361.  First  he showed 
that  the  error IIAY(e'" )[I2 could be expressed as the sum of 
the  errors  due  to each polyphay filter. He then showed that 
the individual errors 11 A Y ,  (e'" )112 are  almost  exactly  propor- 
tional to each other over the whole frequency range. This 
proportionality has the  form (similar to  that  of  (1  13b)) 

llAYp(ej"')ll = l l A Y ~ p  (ei"")ll sin (pn/L)  (1  17) 
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where Il A Y L ~  (e'"')I12 denotes  the  error  for  the polyphase 
filter p = L/2, i.e. it is the filter  which interpolates samples 
exactly half way between the  input samples. This form is a 
stronger condition  than  that of (1  13b)  in  that  it applies to 
individual  frequencies as opposed to  the mean-square error 
integrated over the  entire frequency range. The deviations to  
the  approximation have been found to  be smaller than 1 per- 
cent 1361. 

Because of the above condition,  the design problem may be 
converted to  a simpler problem of designing one of the poly- 
phase filters such  that  it has the desired minimax  error. The 
zeros of this filter can be calculated to obtain  the frequencies 
oh, X = 1, 2, . e ,  R and they can be applied to  obtain the 
minimax  solutions to  the  other polyphase  filters. It is con- 
venient to choose the polyphase filter p = L/2 which  interpc- 
lates sample values half way between input samples. Also, as 
in the case of mean-square-error designs, the design of the 
polyphase  filters is independent of L (assuming that  there are 
always 2R taps  for each  polyphase  filter). Therefore,  it is 
convenient to choose  L = 2 so that  the above design require- 
ments are those of a  minimax half-band filter design. This 
design can be obtained using the techniques described in Sec- 
tion IV-G on half-band filters,  with the  appropriate weighting 
factor IX(eJ")(.  

Fig. 33 shows an example of a  minimax intepolator design 
for OL = 0.5, R = 3, L = 8, and assuming that I X ( $ i w ) I  = 1. Fig. 
33(a) shows the  individual, errors IIAYp(elw )II (note  that 
11 A Y ,  (el" ) I [  = l lAYL-p (el" )II) and Fig. 33(b) shows the 
total  error ~ ~ A Y ( e ~ w ' ) ~ ~ .  Figs. 33(c)-(e) shows the impulse 
response and  frequency response of the final prototype  fdfer 
H(eJW ). Note  that although the  error signal IIAY(eJw )I1 
exhibits  an equg-ripple behavior (as specified by  the design 
criterion) H(eJW ) does not exhibit equal-ripple behavior. 

J. Other  Designs 
In  addition to  the above design procedures  a number of 

other  methods have been proposed in  the  literature.  In  this 
section, we briefly  refer t o  these  methods. 

Parks and Kolba [37] proposed  a design technique  for inter- 
polators  that minimizes the error IAy(m)l in a  minimax sense 
in  the  time domain.  Under the assumption that IX(eJW)I is 
bandlimited  and  spectrally flat within this band this procedure 
leads to  the same designs as the minimum mean-square designs 
of Section IV-H. Matrinex and Parks also investigated the use 
of IIR filters for  interpolators.  The  interested reader is re- 
ferred to  [41 I and [42]  for details. 

Other classical interpolation  techniques are those based on 
linear  and Lagrange methods [4] ,  [ 161. Linear interpolation 
has obvious limitations since it can be interpreted as only a 
two  point filter. Lagrange interpolators are of historical im- 
portance and they can be shown to  be related to  the case of 
maximally flat designs at o = 0 as mentioned in Section IV-I. 

This concludes our discussion of FIR design techniques  for 
the filters for decimators  and interpolators. As we have shown, 
there are many  techniques for designing such filters, and  they 
are all based on slightly different criteria.  Some techniques are 
convenient because of their simplicity,  some because they 
optimize a specific error criterion, and  others are of interest 
strictly  from a  historical point of view. As in most filter d e  
sign problems, it is up  to  the user to decide  which of a  set of 
alternative solutions to  the filter design problem is most appli- 
cable to  the problem at hand. 

0 (1 T/L 

TIME IN SAMPLES 

L L  
FREWENCY 

FREQUENCY L 

Fig. 33. The  impulse and frequency responses of a minimax desim 
interpolation  fdter  with u = 0.5,  R = 3,  and L = 8 .  

v. MULTISTAGE IMPLEMENTATIONS OF SAMPLING 
RATE CONVERSION 

The concept of using a series of stages to  implement  a sam- 
pling rate conversion system can be extended to  the case of 
simple interpolators and  decimators [13],  [31]-[33],  [43]- 
[45] as shown in Figs. 34 and 35. Consider first  a  system for 
interpolating a signal by a factor of L as shown in Fig. 34(a). 
We denote  the original sampling frequency of the  input signal 
x ( n )  as Fo and the  interpolated signal y(m) has  a sampling rate 
of LFo. If the  interpolation  rate L can be factored  into  the 
product 

I 
L = ~ L ~  

i=l 

where  each Li is an integer, then we can express this  network 
in  the  form shown in Fig. 34(b). This structure, by itself, does 
not provide any  inherent advantage over the  structure of Fig. 
34(a). However, if we modify the  structure by introducing a 
lowpass  filter  between euch of the sample rate increasing boxes, 
we produce  the  structure of Fig. 34(c). This structure has the 
property  that  the sampling rate increase occurs in a series of Z 
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r--------- 1 r----------- r-------- l  

stages,  where  each stage (shown within dashed  boxes) is an 
independent interpolation stage. 

Similarly, for an M to 1  decimator, if the overall decimation 
rate M can be factored  into  the  product 

J 
M = n M j  

j=1 

Then  the general singlestage  decimator  structure of  Fig. 35(a) 
can be converted  into  the  multistage  structure of  Fig. 35(b). 
Again each of the stages  within the  structure of Fig .  35(b) is 
an independent decimation  stage. 

Perhaps  the most  obious  question  that arises from  the  above 
discussion is why  consider  such  multistage  structures. At first 
glance it would  appear as if  we are greatly increasing the over- 
all computation (since 'we have inserted  Titers  between  each 
stage) of the  structure. This, however, is precisely the o p p e  
site of what  occurs  in  practice.  The  reasons  for  considering 
multistage  structures, of the  types  shown in Figs. 34(c)  and 
35(b), are: 

1) significantly  reduced computation  to  implement  the 

2)  reduced  storage  in  the  system; 
3) simplified filter design problem; 
4)  reduced  finite  word  length  effects, i.e., roundoff noise, 

coefficient  sensitivity,  in the  implementations of the digi- 
tal  filters. 

system; 

These  structures however  are not  without  some drawbacks. 

These  include: 

1) increased control  structure  required to implement  a mu@- 

2) difficulty  in choosing the  appropriate values of Z (or J )  of 
stage process; 

(1 18)  and  the best factors Li (or Mi). 
It is the  purpose of this  section to show why and  how a  multi- 
stage implementation of a  sampling  rate conversion system can 
be (and generally is) more  efficient  than the  standard single 
stage structure  for  the following cases: 

1) L>> 1 (M = 1) Case 1 

2) M>> 1 (L  = 1) Case 2 

3) L / M =  1  but L>> 1, M>> 1  Case3 

Cases 1  and 2 are  high-order  interpolation  and  decimation sys- 
tems,  and Case 3 is when a slight change in  sampling  rate is 
required (e.g., L/M = 80/69). 

A .  Computational  Efficiency of a  Two-Stage 
Structure-A  Design  Example 

Since the  motivation  for  considering  multistage  implementa- 
tions of sampling rate conversion systems is the  potential 
reduction in computation,  it is worthwhile  presenting"a simple 
deisign example  which  illustrates  the  manner in which  the 
computational  efficiency is achieved. 

The design example is one  in  which  a signal x ( n )  with a sam- 
pling rate of 10 000 Hz, is to be decimated by a  factor of 
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(dl 
Fig. 36. Example of a onestage and  two-stage network  for  decimation 

by a  factor of 100. 

M =  100 to give the signal y ( m )  at a 100-Hz rate. Fig. 36(a) 
shows the  standard, single stage, decimation  network  which 
implements the desired  process. I t  is assumed that  the pass- 
band of the signal is from 0 to  45 Hz,  and that  the band from 
45 to 50 Hz is a  transition band. Hence the specifications of 
the required low-pass filter  are  as  shown  in Fig. 36(b). We 
assume, for simplicity, that  the design formula  (97b) 

can  be  used to give the  order N of a  symmetric  FIR filter  with 
maximum passband ripple 6,, maximum stopband ripple 6,, 
transition  width A F  and  sampling  frequency F.  For  the low- 
pass filter of  Fig. 36(b) we  have 

A F = 5 0 -  4 5 = 5  HZ 
F = 10,000 Hz 

6, = 0.01 
6, = 0.001 

D(6,, 6,) = 2.54 

giving, from  (1  20), N % 5080 TAPS. The overall computation 
in multiplications  per  second necessary to implement  this 
system is 

NF (5080) 10 000 
2M 

R=-- - 
2(100) 

= 250 000 multipiications/sample 

i.e., a total of 250 000 multiplications  per  sample at  the  10 000- 
Hz rate is required to  implement  the  system of Fig. 36(a) 
(assuming the use  of symmetry of h (n)). 

Consider now the 2-stage implementation  shown m Fig.  36(c). 
The first stage decimates the signal by  a factor of 50: and  the 
second  stage  decimates the (already  decimated) signal by  a  fac- 
tor of 2, giving a total  decimation  factor of 100.  The resulting 
filter  specifications  are  illustrated  in Fig. 36(d). For  the first 
stage the passband is from 0 to  45 Hz, but  the  transition  band 
extends  from  45 to 150 Hz. Since the sampling rate  at  the 
output of the first stage is 200 Hz the residual signal energy 

factors of the stages are obtained. 
'We will explain later in this  section how the individual decimation 

from 100 to 150 Hz gets  aliased back into  the range 50 to 100 
Hz after  decimation  by  the  factor of 50. This aliased signal 
then gets  removed in  the second stage. For  the second  stage 
the passband extends  from 0 to  45 Hz and the  transition band 
extends  from 45 to 50 Hz with  a  sampling  rate of 200 Hz. 
One  other change in  the filter  specifications  occurs because we 
are using a  two-stage  filtering  operation. The passband ripple 
specification of the two-stage structure is reduced to 6,/2 
(since each  stage  can  theoretically  add passband ripple to each 
preceding stage). The  stopband ripple  specification  does not 
change  since the cascade of two low-pass filters  only  reduces 
the  stopband ripples. Hence the D(6,, 6,) function  in  the 
filter design equation  becomes  D(6,/2, 6,) for  the filters in 
the two-stage  implementation. Since  D(6,, 6,) is relatively 
insensitive to factors of two,  only slight changes occur  (from 
2.54 to 2.76)  due to this factor.  For  the specific example of 
Fig. 36(c) we  get (for  the first  stage) 

2.76 
((150 - 45)/10 000) 

N1 = = 263 TAPS 

N I F  263(10 000) R1=-- - 
2W1)  (2)(50) 

= 26 300 multiplications  per  second. 

For  the second  stage we  get 

110.4(200) 
Rz = 

(2)(2) 
= 5500 multiplications  per  second. 

The  total  computation  for  the two-stage  implementation is 

R 1  + R2 = 26  300 + 5500 = 31 800 multiplications  per  second. 

Thus  a  reduction  in  computation of almost 8 to 1 is achieved 
in  the two-stage  decimator over a single-stage decimation  for 
this design example. 

It is easy to see where the reduction  in  computation  comes 
from  for  the multistage  decimator structure  by examining 
(1 20). We see that  the required  filter  orders  are  directly p r e  
portional to D(6,, 6,) and F ,  and inversely proportional to 
A F ,  the filter  transition  width.  For  the  early stages of a  multi- 
stage  decimator,  although  the sampling rates  are large, equiva- 
lently  the  transition  widths are- very large;  thereby  leading to 
relatively small  values of filter  length N .  For  the last stages 
of a  multistage  decimator, the transition  width  becomes small 
but so does the sampling rate and the combination again  leads 
to relatively small  values of required  filter  lengths. We see 
from the above  analysis that  computation is kept low  in  each 
stage of the overall multistage  structure. 

The simple example  presented  above is by no means  a com- 
plete  picture of the capabilities  and  sophistication that can be 
found  in multistage  structures  for  sampling rate conversion. It 
is merely  intended to show  why  such  structures  are of funda- 
mental  importance  for  many  practical  systems in which sam- 
pling rate conversion is required. In  the  next  section we set 
up a  formal  structure  for dealing with  multistage  sampling rate 
conversion networks,  and  show  how it can be used in a  variety 
of implementations. 
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Fig. 37. Signal processing operations and ffiter  specifications for a 
I-stage decimator. 

B. Parameter  Specifications for Multistage Implementations 
Consider the J-stage  decimator of Fig. 35(b)  where  the  total 

decimation  rate of the  system is M. The  sampling  rate  (fre- 
quency)  at  the  output of the  jth stage ( j = 1,2,  * - - , J )  is 

with  initial input  sampling  frequency F o ,  and  final output 
sampling frequency FJ,  where 

j=1  

Any of the  structures discussed in  Section 111 can be  used for 
each stage of the  network. Using the ideas developed above, 
we define  the  frequency range of the  output signal y ( m )  as 

O < f < F p  Passband (1 23a) 

F p  < f Q F,  = - Transition Band. (1 23b) 

In each stage of the processing, the baseband  from 0 to Fs 
must be protected  from aliasing. Any other  frequency  band 
can be aliased in an early stage since subsequent processing will 
remove  any signal components  from  the  band as Seen in Fig. 37. 
For  the first stage the passband is defined  from 

F.7 
2 

0 < f Q Fp Stage 1 Passband (1  24a) 

but  the transition  band is from 

Fp Q f Q F1 - F, Stage  1  Transition Band. (124b) 

The  transition  band will alias back  upon itself (after  the 
decimation by M1) only  from f = F, up  to f = F1/2; hence  the 
baseband of (123) is protected against aliasing. The  stopband 
of the Stage 1 low-pass filter is from 

F 1  - F, < f Q Fo/2  Stage 1  Stopband.  (124c) 
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For  the  second  stage of the  system,  the specifications on the 
low-pass filter  are  defined for 

0 < f < Fp Stage  2 Passband (125a) 

F2 - F, Q f Q F1 /2 Stage  2  Stopband  (1  25b) 

as shown  in Fig. 37(d). Again the band  from 0 Q f Q Fs is 
protected  from aliasing in  the  decimation stage. 

For  the  rth stage of the  system,  the low-pass filter  band spec- 
ifications are 

O < f < F p  Stage r Passband (1  26a) 

F, - F, < f < F,-l /2 Stage r Stopband.  (1  26b) 

Alternatively if it is permissible to allow aliasing into  the 
transition region F p  to F,, F, in (123)-(  126) can be replaced 

It is readily seen from  (122)-(126)  and Fig. 37  that,  for  the 
last  stage, the transition  band of the low-pass filter is the same 
as the transition  band of the one-stage implementation  filter. 
However, the sampling rate of the  system is substantially re- 
duced  in  most cases. 

Up to now we have been  concerned solely with  the regions 
of definition of the  individual low-pass filter  frequency bands. 
Another  consideration in the design equations is the magni- 
tude specifications  on the filter  response  in  each of the fre- 
quency bands. If it is desired that  the overall passband response 
for  the cascade of J stages be  maintained  within  1 f 6, ,  it is 
necessary to require  more severe constraints on the passband 
ripple of the  individual  filters  in  the cascade. A convenient 
choice  which will satisfy  this  requirement is to specify  the 
passband ripple  constraints  for  each  stage j to be  within  1 f 6,j 
where 6,j = 6,/J. In  the  stopband  the ripple  constraint  for 
the  composite filter  must be  6, and  this  constraint  must be 
imposed on each of the  individual low-pass filters as well in 
order to suppress  the effects of aliasing. 

Fig. 38 illustrates the signal processing operations  and low- 
pass filter specifications for  an I-stage  implementation of an 
interpolator  with an overall change in sampling rates of 1  to. 
L . One small change in notation is used in  defining  the I-stage 
interpolator-namely  the stages are  numbered  backwards  from 
I to 1. The reason we do  this is to clearly show that  the I-stage 
interpolator  with  interpolation  factors Li is a  dual of thez-stage 
decimator  with  decimation  factors  Li. This may be trivially 
seen by  taking  the  transpose of the  network of  Fig. 38(a). The 
result is the  network of  Fig. 37(a)  (with Mi = Li  and J = I ) .  
Hence, in order to understand  the behavior and  properties of 
multistage  structures  for  interpolators, we need  only study  the 
multistage  decimator. 

Given the  network  structure of  Fig. 37  for  the  J-stage  de& 
mator, we will  be interested  in  the  specification of the follow- 

by Fp . 

the  number  of stages J to realize an overall decimation 
factor of M ;  
the  choice of decimation  factors Mi, j = 1,2,  - * * , J, that 
are appropriate  for  the  chosen  implementation; 
the  types of digital  filters used in  each  stage of the struc- 
ture-e.g., FIR versus IIR designs, equiripple versus half- 
band versus specialized designs; 
the  structure used to implement  the  filter  chosen  for  each 
stage; 
the  required  filter  order  (impluse  response  duration) re- 
quired  in  each stage of the  structure; 
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(d) 
Fig. 38. Signal processing operations and fdter specifications for an 

I-stage interpolator. 

6)  the resulting amount of computation and  storage  required 
for each stage, and for  the overall structure. 

As in most signal processing design problems, there are  a  num- 
ber of factors  that influence  each of the above choices, and it 
is not a simple matter  to select any  one choice over all others. 

Three  distinct  approaches to  the design of multistage struc- 
tures have been proposed by various authors. In one approach, 
suggested by Bellanger et  al. [32],  [ 331 and Rorabacher [ 3  1 1 ,  
a  choice of factors of Mi = 2 for all stages is suggested in  order 
t o  take advantage of the properties of half-band filters. Shively 
[44] and  Crochiere  and  Rabiner [ 131,  [49] have suggested an 
approach  in which general equiripple  filters  are used and the 
choice of the  factors Mi are  chosen through an optimization 
procedure which minimizes the overall computation  rate  (or 
storage)  and the  number of stages. Finally, Goodman and 
Carey [45] have suggested a  family of specific filter designs 
which  can be applied to early stages of multistage  decimators 
or  final stages of multistage interpolators. 

In practice any of the above approaches or  any  combination 
of them can be applied to  obtain a  multistage implementation. 
The  tradeoffs are highly applications dependent.  Furthermore 
any of the  structures discussed in Section III can be be used to 
implement  individual stages. In  the following discussion we 
will briefly discuss the above approaches. 

C. Half-Band Designs 
The half-band filter structure is based on  the symmetrical 

half-band FIR filter discussed in Section IV-G. Such  filters 
naturally have the  property  that  approximately half of the 
filter coefficients  are  exactly zero. Hence the  number of mul- 
tiplications in implementing such filters is half of that needed 
for  a linear phase design, and a quarter of that needed for an 
arbitrary phase FIR filter. The half-band filter is appropriate 
only for sampling rate changes of 2 to  1. Hence the half-band 
multistage structure consists of a cascade of J-stages with 2 to  
1 reductions in the sampling rate,  and, if necessary, a  final 

stage with a reduction of M,/L, in sampling rate  [321, 1331 
where 

M J L ,  = M/2J (127) 

This final stage can be realized by any of the  structures  for  the 
general L/M sampling rate conversion discussed in Section 111. 

Several constraints  must be observed with the half-band 
filters, as discussed in Section N-G.  First, the filter  tolerances 
in the passband and  stopband must be identical  as seen from 
(102).  Therefore, the smallest of the  two required  tolerances 
6, or 6,, for  the passband or  stopband, respectively, must be 
used in the design for  both bands. A second  constraint is that 
the filter response for  the half-band filter is symmetrical about 
one  quarter of the sampling rate, as seen by  (104) and the 
attenuation  at this  frequency  is only 6 dB. Therefore, if the 
last stage of a  decimator (or  the first stage of an interpolator) 
is a  2 to 1 stage, a  filter other  than a half-band design may stiU 
be needed if this attenuation is not sufficient. We now consider 
a simple design to illustrate  this method. 

Design Example 1 -Consider the design  of a six stage  struc- 
ture  to decimate  a signal by a factor of M = 26 = 64, with  filter 
specifications 

6, = 0.01, 6, = 0.001, Fp = 0.45 Hz, F, = 0.5 Hz 

The  input sampling frequency is FO = 64 Hz, and  the  output 
sampling frequency is F6 = F0/64 = 1.0  Hz. For a single-stage 
implementation we get 

N =  
D,(O.Ol, 0.001) 

(0.05)/64 
= (2.54)  (20)  (64)=  3251 TAPS 

NF,, 325  l(64) R=-- - = 1625 multiplications  per  second 
2M 2(64) 

where the  factor of two in  the above expression for R is due to 
the  fact  that  the filter is symmetrical. 
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For  a six stage  half-band  implementation we require: 

6 = min (+, 6,) = 0.001 

therefore, 

Dm(O.OO1, 0.001) = 3.25. 

In the  implementation we will permit aliasing into  the transi- 
tion region Fp to  F, to  permit  the use of a half-band  filter  in 
the  fiial stage. The  filter  order  for  the  jth stage of the design 
can then be expressed as 

Dm(O.OO1, 0.001) 
Nj 

AFjlFj-1 

where 

A F j =   F j -  2Fp.  

Therefore,  the  filter  orders  are  approximately  (based on the 
next  largest odd  order  filter  from  the  above  estimate) 

N1 2: 7 TAPS 
Nz Z 7  TAPS 
N3 = 9  TAPS 
N4 Z 9  TAPS 
N5 31.13 TAPS 
N6 2: 65 TAPS. 

The  number of multiplications  per  second  necessary to  impla 
ment each of these  filters is 

R i - 4  J j 
- 1. N.F 

where the  factor of $ is due to  the fact  that  approximately 
one-half of the coefficients  in  the half-band  filters  are  zero  and 
the impulse  response is symmetric.  Then  the  multiplication 
rates  for  the  stages  are 

(7) (32) 
4 

R 1  2: - = 56  multiplications  per  second 

R z ' - =  (7) (16)  28  multiplications  per  second 
4 

R3 18  multiplications  per  second 
R4 e 9  multiplications  per  second 
R5 z 6 . 5  multiplications  per  second 
R6 16.25  mulitplications  per  second 

and the  total  rate is 

6 
R T = Rj 1: 134  multiplications  per  second 

j = l  

If we do  not allow aliasing into  the  transition band  from Fp to 
F,, then all  of the  transition  bands of the above  filters  become 
smaller  by 2(F, - F p )  = 0.1  Hz. This does not significantly 
affect  the  orders of the  filters N l  to N s .  The  transition  band 
of the  last  filter N 6 ,  however, is effectively  reduced by a  factor 
of two and it can no longer be  a half-band design. Thus N6 
and R 6 become 

N6 130 TAPS 

R6 2: 3 N6F6 = 65  multiplications  per  second. 

This increases the  total  rate to  

R T 183  multiplications  per  second 

Thus  it is seen that,  for  the above  example,  the  multistage 
structure is more  efficient  than  the single-stage design by a 
factor  1625/183 = 8.9,in  multiplications  per  second. If  aliasing 
is permitted in the  band  from 0.45 to  0.5 Hz then  the  filter 
order  for  the  singlestage design can  be  reduced  by two  and  the 
multistage  implementation is more  efficient  by  a  factor  (1 6251 
2)/134 = 6.1 in multiplications  per  second. 

D. Designs Based on  a  Multistage  Optimization fiocedure 
A second  approach to  the selection of parameters Mi, j = 

1,2 ,  - - , J and the  number of stages J is based on setting  up 
the  problem  in  terms of an  optimization  procedure [ 131, 
[44],  [49]. The  order of the  filters  for each  stage  can be 
expressed as 

and the  computation  rate  (multiplications  per  second)  can be 
expressed as 

where the factor of 4 is due to  the assumption  that  the sym- 
metry of the  filter is used to  reduce  multiplications. (This 
optimization  approach  cannot,  however,  account  for  special 
features of specific  filter designs such as half-band  filters  or 
those discussed in  the  next  section.) 

From  (119)-(126),  (128),  (129) it can be shown [ 131 that 
the  total  multiplication  rate R T for  the design can be expressed 
as the  product of three  terms 

and  where 

l'his function  can be minimized as a  function of the  parameters 
Mi, j = 1,2,  - * * , J for each  choice of J by  minimizing S(-). 
For J = 2  this  can be achieved by taking  the  derivative of S ( - )  
with  respect to M1 and  setting  it to  zero. This leads to  the 
ideal  choice of M1 and Mz as 

- 2M(1 - dMAfl(2 - A f ) )  
Mlopt - 2 - A f ( M +  1) (1 33a) 

(1 33b) 

In  practice  the nearest  integer values for M1 ind Mz must be 
used. 

For J > 2  an  analytical  approach is'not possible. However, it 
is possible to find  the values of Mi, j = 1,2 ,  - * , J with  the aid 
of a  computer-aided  optimization  procedure. It was found  in 
[ 131 that  the  Hooke  and Jeaves [46],  [47] procedure  worked 
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Fig. 39. Minimized  values of Sand Tfor ideal  values of Mi, i = 1 , 2 ,  . * . , 
J, and A f = 0.1. 

well on  this  problem  and did not require the evaluation of 
derivatives. 

A set of design curves was generated based on  the above 
procedure  and  they can be found in [ 131.  Alternatively,  a 
similar  approach  can be used for designs which  minimize total 
storage, i.e., 

J 
NT =x N~ 

j=1 
(1  34a) 

(1  34b) 

where T is another  function of J ,  Af, M ,  M I ,  M z ,  - - , M J - ~ ,  

lo00 
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.- z 
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1 IO 400 
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Fig. 40. Minimized  values of Sand T for ideal  values of Mi, i = 1 , 2 ,  . . . , 
J, and A f = 0.01. 

l.e., 

T=T(J,A~,M,M~,M~,...,MJ-~) . ( 1 3 4 ~ )  

These design curves can be found in [49].  It turns  out  that 
designs based on minimizing N T  also result in designs that are 
essentially minimized for R T  as well since the minima  for R T  
are  relatively  broad  whereas minima for NT are  slightly  nar- 
rower.  Therefore,  the design curves in [ 491 are  preferred. 

Figs. 39  and 40 illustrate  two example of these design curves 
for  the cases Af = 0.1 and Af = 0.01, i.e., a  ten  percent  and  a 
one  percent  transition  band. Figs. 39(a)  and  40(a)  show  plots 
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of minimizedvaluesofSin(130)and(131)asafunctionofM 
for  each  value of J .  Figs. 39(b)  and  40(b) show similar plots 
of  minimized values of T in  (134a)-(  134c).  Finally Figs. 
39(c) and  40(c) show ideal values of Mi, I = 1, 2, * - * , J as 
a  function  of M for  each J which  result 111 the minimized 
values of S and T. Several important  properties of this design 
procedure  can be seen from  these  figures.  They  include  the 
following. 

1)  For  optimized  computation, most of the gain in effi- 
ciency is achieved in  a two stage structure (J = 2),  with  only 
small gains being achieved with  three  or  four  stage designs. 

2)  For  optimized  storage,  substantial  reductions  in  storage 
can st i l l  be achieved  in going from two to  three  or  four stages, 
although  the largest  decrease is obtained  in going from  one to  
two stages. 

3)  For  optimized  storage designs, the  actual  computation is 
essentially  identical to  that of optimized  computation designs 
[49]. Thus  a design that is minimized  for  storage is also mini- 
mized for  computation. This result is a  consequence of the 
fact  that  the  function S has a  broad  minimum,  whereas T has 
a somewhat  narrower  minimum. 

4) The gain  in efficiency  (either  computation or  storage)  in 
going from  1 to  J stages  increases  dramatically as Af gets 
smaller,  and as M gets  larger. For example a  computational 
reduction of about  200 to  1 can be achieved with  a  three  stage 

R1 = 116 multiplications  per  second 
R2 = 111 multiplications  per  second 
RT = R 1  + R 2  = 227 multiplications  per  second. 

From  the curves of S in Fig. 39(a)  it is seen that  a J = 3 stage 
design can be expected to result in a slightly  lower  overall 
computation  rate. Thus following the same  procedure we get 

M1 =8, Mz = 4 ,  M 3  = 2  
N1 = 2 6  R1 = 104 
Nz = 22 R2 = 22 
N3 = 115 R3 = 5 7  
R T = R ~   + R 2   + R 3  = 183 

Thus we see that  a  three stage design achieves a  reduction in 
computation (multiplications/second) of a  factor of 8.9 over a 
one-stage design or  essentially the same as that of the  6stage 
halfband  approach. 

By using the  multistopband designs discussed in  Section 
IV-F  for  early  stages  in  the  above two- or  threestage design it 
is possible to reduce  the  order of the  fiters  in  those stages. 
For example  from Fig. 28 it can be estimated  that  for  the 
three-stage design, N 1  can be reduced  by  a  factor of about 22 
percent  or N 1  E 20  and N2 can be  reduced  by  a  factor of 
about  10  percent  or N2 E 20. This results  in  an  overall com- 
putation  rate of RT = 157  (multiplications  per  second). 

structure  implementing  a  1000 to  1  decimation  for  a  normal- E. Multistage Designs Based on a Specific 
ked transition  width  of A f = 0.0 1. 

low the  relation 
5) The  decimation  ratios of a  J-stage  optimized design fol- 

of Filter Designs 
The  third  approach  [451 to  multistage design is to  use a 

specialized  family of filter designs shown  in  Table I  for early 
M j > M j + l  > * * ‘ > M J .  (135) stages of the design and  possibly a general FIR  filter  or  half- 

6)  The required  computation  (or  storage) of an  optimized 
J-stage design is relatively  insensitive to  small changes  in the 
Mi for  each  stage.  Thus  nearest  integer values of Mi can be 
chosen  in  practical designs with  little loss  in  efficiency. 

The curves of  Figs. 39  and 40 provide a  set of design guide- 
lines  for  the  optimized J-stage  decimator.  To  illustrate how 
these curves can be applied we  give a design example. 

Design Example 2- Consider the design of a  J-stage  structure 
to  decimate  a signal  by a  factor of M = 64,  with fi ter specifica- 
tions 6, = 0.01, 6, = 0.001, Fp = 0.45 Hz, F, = 0.5 Hz (this is 
identical to  Design  Example 1). The  input sampling  frequency 
is Fo = 64 Hz, and the  output sampling  frequency is FJ~ = 

band  filter designed according to  one of the  methods  in Sec- 
tion IV for  the  final stage. F1,  the  first  filter in Table I is a 
filter  with Mi one’s for  coefficients  and  it  can be used for 
arbitrary  decimation  factors MI. Filters F 2  through F 9  are 
half-band  filters  for  decimation  by 2  to 1 with  impulse  response 
durations  from  3 to  9 samples  and short  coefficient  word- 
lengths.  Filters F2,   F3,  and F5 have monotone passband fre- 
quency  responses,  and  filters F 4 ,  F6-F9 have 2  or  more  ripples 
in  the passband [45]. 

The way  in which  specific  filters  from  Table  I  are  selected 
for  each  stage of a  J-stage design is as follows. The  filter  speci- 
fications F,, F,, 6,, 6, are  defined as discussed previously. A 
level ripple  factor D is then  defined as Fo/64 = 1 .O HZ. 

For a J  = 1 stage design we get (see  Example 1) D = -20 log (6,) for  filters F1,  F2,  F3,  F5 (136a) 

N =  325  1 TAPS or 
R = 1625  multiplications per second. 

For  a J = 2 stage we can  determine  the  ideal choices of M1 and 
M2 from  (1  33).  Alternatively,  noting  that 

Af = = 0.1,  defined as 

D = -20 log  [min (6,/J,  S,)] for  filters F4 ,  F6-F9 

(136b) 

and  an  “oversampling”  frequency ratio Oi for  each  stage j is (0.5 - 0.45) 
0.5 

we may use the  appropriate design curves for Af = 0.1 in Fig. 
39. Using either  method we get  ideal values & E 23  and - 
Ml E 2.7. The nearest  choice of integer values such  that 
M1M2 = 64 is either = 32, M 2  = 2) or (M1 = 16, M2 = 4). The  procedure  at  each  stage is to determine  the range of D and 

the design parameters: range is plotted  in  the  chart of  Fig. 41  which  shows  boundaries, 
in  the  plane,  for which each of the  filters  meets  specifications. 

we use the second  choice in this  example.  his leads to oi such  that each Of the  filters Of Table 1 is applicable. This 

N1 = 5 8  TAPS 
N2 = 221 TAPS 

The way the  chart is used is as follows. For stage 1,  the grid 
point (01, D )  is located. If the  boundary line of filter F 1  lies 
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TABLE I 
Cownc~mrs OF SPECIALIZED FIR FILTERS 

Filter 

1 1 3 F1* 

h ( 9 )  h ( 7 )  h ( 5 )  h ( 3 )  h ( 1 )  h ( 0 )  N 

oi 
(b) 

Fig. 41. Design chart showing  fdters  required to meet  specifications on 
D and Oi and a  typical  example of the use of the chart. 

to  the  left of the grid point, filter F l  is used in  the first stage, 
and the decimation rate of this stage M I ,  is the largest integer 
such  that  the grid point (01 /Mi, D )  also lies to  the right of the 
F 1  boundary line. For  the  second, and  subsequent stages, dec- 
imation  ratios of 2  are  used, and  the filter  required is the 
fiiter whose boundary line lies t o  the  left of the grid point 
(01/2, D )  for stage j .  This procedure can be used until  the 
next t o  last stage at which  a general FIR filter is required to 
meet overall filter specifications. 

We now  illustrate this design method  with  the following 
example. 

Design  Example 3-To illustrate the above procedure, con- 
sider again the M = 64 decimator with 6, = 0.0 1, 6, = 0.00 1, 
F, = 0.45, F, = 0.5, Fo = 64 Hz, and FJ = 1 Hz. We calculate 
first the ripple factor D as 

D = - 2 O l o g ( O . O 0 1 ) = - 6 0 d B ( F l , F 2 , F 3 , F S )  

D = -20 log (min (0.01/6,0.001))=  -60 dB (F5,F5, F6-F9) 

where we have used 6 as the largest possible number of stages 
in  the design. The oversampling index  for  the first  stage goes 
from  64  to  32, showing that an F 2  filter is required, as shown 
in Fig. 41(b). For stages 2  and 3, filter F 3  can be used as Oj 
goes from  32 to  16 (stage 2), and 16 to  8 (stage 3). For stage 
4 (as Oi goes from 8 to  4) an F5  filter is required, whereas for 
stage  5 (as Oi goes from 4 to  2) an F8  filter is required. For 
the final  stage,  a 115  point  FIR filter (the same used in Design 
Example 2, stage 3 of the three-stage design) is  required. 

The  total  computation (using symmetry and excluding mul- 
tiplication by l ,  - l ,  or  2) of the resulting sixstage design is: 

Multiplications 
Stage  Filter per second 

j =  1 2 F2  
2  2 F 3  
3 2 F 3  
4 2 F 5  
5  2 F 8  
6 

R1 = O  
Rz = 32 
R3 = 16 
R4 = 16 
R5 = 10  

RT=  131  
2 N6 = 115  R6 

From  this example it can be seen that some savings in com- 
putation (multiplications  per  second)  can be achieved over 
previous designs discussed. However, this is achieved at  the 
expense of extra manipulations of the data to  avoid coeffi- 
cients of 2,  1, and -1. 

F. Other Considerations in Multistage  Designs 

In  the preceding sections we have considered three approaches 
to  multistage designs of decimators  or,  equivalently,  interpola- 
tors  by use of transposition. In practice there are  many fac- 
tors besides computation  rate  in multiplications/sec that deter- 
mine the  tradeoffs  in these designs. 

One consideration is that of the cost of control of data flow 
in the  structure when many stages are involved. Fig. 42(a) 
illustrates  an example of a block diagram of a threestage deci- 
mation  structure and Fig. 42(b) shows the corresponding 
control sequence that must be used to implement this struc- 
ture  [49].  In practice a block of M samples of x ( n )  are en- 
tered into  the main input  buffer  and,  after processing, one 
sample r(m) is obtained  at  the  output. Three state-variable 
buffers S1,   S2,  and S3 are used to  hold internal data for  the 
filters. The  control  structure consists of t b e e  loops, one 
within the  other, to maintain the  proper timing  and  flow of 
data in the  structure. The actual operations are self-explanatory. 
In [SO] a program is available to  implement this structure. 

Many other  factors must also be considered in the design of 
multistage decimators  and interpolators. As in most real world 
situations  there is no simple or universal answer as t o  what 
approach is best and in practice  a  combination of the above 
techniques often yields the most appropriate tradeoffs. 
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Fig. 42. Computational  operations  and  control  structure  for a  three- 
stage decimator. 

VI. DISCUSSION 
In  this  paper, we have attempted  to present  a tutorial cover- 

age of the  topic of decimation  and interpolation of digital 
signals. We began in Section I1 by  introducing  the basic con- 
bepts of sampling rate conversion and its relationship to  
periodically time-varying linear systems. In  Section 111 we 
discussed three categories of structures,  direct-form, poly- 
phase, and time-varying structures  for implementing single 
stage designs of decimators or interpolators.  In  Section IV we 
examined  properties of ideal  filters for sampling rate conver- 
sion systems and then briefly discussed a  variety of filter de- 
sign techniques for designing practical  filters for these systems. 
Finally in Section  V we considered multistage structures and 
showed that under  certain  circumstances they could be con- 
siderably more efficient than single stage designs. Three a p  
proaches were then presented for designing such multistage 
structures. 

While we have covered a large scope of material in  this paper 
there were numerous  important topics that had to be left  out. 
For example  a large body of literature is developing on  the use 
of IIR designs for sampling rate,conversion, particularly  where 
linear phase response is not of concern. References [231, 
[4 11, [421, [491  illustrate  examples of some of this work. 

Another area of work that has not been covered in this  paper 
is the use  of decimation  and interpolation concepts for  the 
efficient  implementation or design  of other digital signal pro- 
cessing operations. For example, the polyphase  concept is 
very useful in designing phase shifters with fractional  sample 
delays since each polyphase filter component  by itself approxi- 

mates  an allpass system [5 11. The cascade of a  decimator 
followed by an interpolator also leads to  an efficient approach 
to  the  implementation of narrow-band low-pass or bandpass 
fiiters [ 131, [32], [52], [53] and these concepts have not 
been covered in this  paper. 
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