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Digital Revolution



Pressure is on DSP

• Success of digital data acquisition is placing increasing pressure 
on signal/image processing hardware and software to support

higher resolution / denser sampling
» still cameras, video cameras, imaging systems, …

+
large numbers of sensors

» multi-view image data bases, camera arrays 
and networks, pattern recognition systems, 

+
increasing numbers of modalities

» visual, IR, UV, THz, x-ray, SAR, …



hyperspectral camerascamera arrays

distributed camera networks



Pressure is on DSP

• Success of digital data acquisition is placing increasing pressure 
on signal/image processing hardware and software to support

higher resolution / denser sampling
» still cameras, video cameras, imaging systems, …

+
large numbers of sensors

» multi-view image data bases, camera arrays 
and networks, pattern recognition systems, 

+
increasing numbers of modalities

» visual, IR, UV, THz, x-ray, …
= 

deluge of datadeluge of data
» how to acquire, store, fuse, 

process efficiently?
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Sensing by Sampling



Sensing by Sampling

• Long-established paradigm for digital data acquisition
– sample data at Nyquist rate (2x bandwidth) 
– compress data (signal-dependent, nonlinear)

compress transmit/store

receive decompress

sample

sparse
wavelet

transform



Sparsity / Compressibility
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What’s Wrong with this Picture?

• Long-established paradigm for digital data acquisition
– sample data at Nyquist rate (2x bandwidth) 
– compress data (signal-dependent, nonlinear)
– brick wall to resolution/performance

compress transmit/store

receive decompress

sample

sparse
wavelet

transform
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Compressive Sensing (CS)

• Recall Shannon/Nyquist theorem
– Shannon was a pessimist
– 2x oversampling Nyquist rate is a worst-case bound 

for any bandlimited data
– sparsity/compressibility irrelevant
– Shannon sampling is a linear process while 

compression is a nonlinear process

• Compressive sensing

– new sampling theory that leverages compressibility

– based on new uncertainty principles

– randomness plays a key role



Compressive Sensing

• Directly acquire “compressed” data

• Replace samples by more general “measurements”

compressive sensing transmit/store

receive reconstruct



Sampling

• Signal      is    -sparse in basis/dictionary
– WLOG assume sparse in space domain

• Samples

sparse
signal

nonzero
entries

measurements



Compressive Data Acquisition

• When data is sparse/compressible, can directly 
acquire a condensed representation with 
no/little information loss
through dimensionality reduction

sparse
signalmeasurements

sparse
in some

basis



Compressive Data Acquisition

• When data is sparse/compressible, can directly 
acquire a condensed representation with 
no/little information loss

• Random projection will work

sparse
signalmeasurements

sparse
in some

basis

[Candes-Romberg-Tao, Donoho, 2004]



Compressive Sensing

• Directly acquire “compressed” data

• Replace samples by more general “measurements”

random measurements transmit/store

…

receive reconstruct



CS Signal Recovery

• Reconstruction/decoding: given
(ill-posed inverse problem) find

measurements
sparse
signal

nonzero
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CS Signal Recovery

• Reconstruction/decoding: given
(ill-posed inverse problem) find

• Null space:  there are infinitely many       
such that 

• So search in null space for the “best”
according to some criterion
– ex: least squares



CS Signal Recovery

• Reconstruction/decoding: given
(ill-posed inverse problem) find

• L2 fast, wrong



CS Signal Recovery

• Reconstruction/decoding: given
(ill-posed inverse problem) find

• L2 fast, wrong

• L0 correct, slow
only M=K+1 
measurements 
required to 
perfectly reconstruct 
K-sparse signal
[Bresler; Rice]

number of
nonzero
entries





CS Signal Recovery

• Reconstruction/decoding: given
(ill-posed inverse problem) find

• L2 fast, wrong

• L0 correct, slow

• L1 correct, 
mild oversampling
[Candes, Romberg, Tao; Donoho] linear program



Compressive Sensing

• Directly acquire “compressed” data

• Replace samples by more general “measurements”

transmit/storerandom measurements

…

receive linear pgm



CS Signal Recovery

original (65k pixels)

20k random 
projections

7k–term wavelet 
approximation



CS Hallmarks

• CS changes the rules of the data acquisition game
– exploits a priori signal sparsity information 

• Universal
– same random projections / hardware can be used for

any compressible signal class                     (generic)

• Democratic
– each measurement carries the same amount of information
– simple encoding
– robust to measurement loss and quantization

• Asymmetrical (most processing at decoder)

• Random projections weakly encrypted



Secondo

Compressive Sensing
in Action



“Single-Pixel” CS Camera
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DMD array
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“Single-Pixel” CS Camera

random
pattern on
DMD array

DMD DMD

single photon 
detector

image
reconstruction

or
processing

…

1 2 M





Single Pixel Camera

Object LED (light source)

DMD+ALP 
Board

Lens 1Lens 2
Photodiode 

circuit



First Image Acquisition

target 
65536 pixels

1300 measurements 
(2%)

11000 measurements 
(16%)



World’s First Photograph

• 1826, Joseph Niepce
• Farm buildings and sky 
• 8 hour exposure
• On display at UT-Austin



Second Image Acquisition

4096 
pixels

500 
random measurements



Single-Pixel Camera
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Dual Visible and Infrared Imaging

dual photodiode sandwich

K cutout in paper

front-lit
visible

back-lit
IR LEDs



Dual Visible and Infrared Imaging

dual photodiode sandwich

K cutout in paper

front-lit
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CS Low-Light Imaging with PMT

true color low-light imaging

256 x 256 image with 10:1 
compression
[Nature Photonics, April 2007]



Video Acquisition
• Measure via stream of random projections

– shutterless camera

• Reconstruct using sparse model for video structure
– 3-D wavelets (localized in space-time)

space

time

3D complex wavelet



3-D wavelet thresholding
2000 coeffs, MSE = 3.5original 64x64x64

joint 3-D CS recon
20000 coeffs, MSE = 3.2

frame-by-frame 2-D CS recon
20000 coeffs, MSE = 18.4







Miniature DMD-based Cameras

• TI DLP “picoprojector” destined for cell phones



Oops, crash, seven million years of bad luck!?! 

This is me skydiving 
.

This is me swimming with dolphins 
.

This is me at the Grand Canyon 
.





Contorno

Information Scalability



Information Scalability

• Random projections ~ sufficient statistics

• Same random projections / hardware can be used 
for a range of different signal processing tasks  
reconstruction > estimation > recognition > detection

• Many fewer measurements may be required to 
detect/classify/recognize than to reconstruct

• Example applications:
– adaptive cameras
– smashed filter:  compressive matched filter
– non-imaging cameras
– meta-analysis



Attentive CS Video Camera
[Ilan Goodman, Don Johnson]

• Detect activity from random measurements
• Detection requires far fewer measurements than 

reconstruction
– 320x240 pixels x 24 bits/pixel x 20 frames per second 

= 36,864,000 bits per second
– detect activity from statistics of 

6 CS measurements/second x 4 bits/measurement 
= 24 bits/second

red = rate throttled back




Hyperspectral Image Classification
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• 3D random projections of
hyperspectral data cube

• Classify/segment rather
than reconstruct

spectrum 1

spectrum 2

spectrum 3



Matched Filter

• For signal classification when templates are 
parametrically transformed
– ex: shift/rotate/scale 
– formulated via GLRT 

• Underlying geometry: low-dimensional
manifold

• Classification: nearest manifold search

M1

M
2M3



Smashed Filter

• Dimension-reduced GLRT for parametrically 
transformed signals

• Key theoretical ingredient:   manifold structure 
preserved by random projections

• Classification: nearest manifold search

M1

M
2M3

Φ M1

Φ M
2Φ M3



Smashed Filter – Experiments

• 3 image classes:    tank, school bus, SUV

• N = 65536 pixels
• Imaged using single-pixel CS camera with

– unknown shift
– unknown rotation



Smashed Filter – Unknown Position

• Object shifted at random (K=2 manifold)
• Noise added to measurements
• Goal: identify most likely position for each image class

identify most likely class using nearest-neighbor test
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Smashed Filter – Unknown Rotation

• Object rotated each 2 degrees

• Goals: identify most likely rotation for each image class
identify most likely class using nearest-neighbor test

• Perfect classification with
as few as 6 measurements

• Good estimates 
of rotation with 
under 10 
measurements
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Dolce

Other Compressive
Camera Architectures



Random Lens Camera

• Computes random sums using random mirror
• Use regular CCD array to acquire many random 

sums at once
• CS reconstruction yields super-resolved image

[Rob Fergus, Antonio Torralba, Bill Freeman @ MIT]



Thin Cameras

• Dave Brady @ Duke
• Thin cameras < 2.5mm
• Based on coded aperture, lenslets



Café

Conclusions



What’s In it for You?
• Compressive sensing

– exploits signal sparsity/compressibility information
– based on new uncertainty principles
– Sudoku-like reconstruction from random measurements
– integrates sensing, compression, processing
– enables new sensing architectures and modalities
– most useful when measurements are expensive

• CS measurements are information scalable
reconstruction > estimation > classification > detection

• Selected mid/long-term applications
– cameras and imagers where CCDs and CMOS imagers 

are blind (science, military)
– security applications (potential for low cost / low power)
– large camera arrays (compressibility gain with multiple cameras)
– advanced algorithms for today’s 

cameras (eg: deblurring)

dsp.rice.edu/cs



Contact

Richard Baraniuk and Kevin Kelly

ECE Department
Rice University

richb@rice.edu, kkelly@rice.edu
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