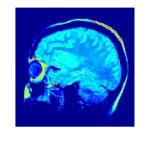
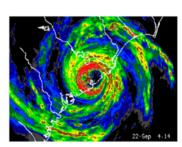


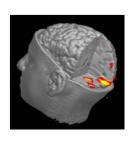
Compressive Sensing for Vision Applications

Richard Baraniuk

Rice University dsp.rice.edu/cs







Digital Revolution

Pressure is on DSP

 Success of digital data acquisition is placing increasing pressure on signal/image processing hardware and software to support

higher resolution / denser sampling

» still cameras, video cameras, imaging systems, ...

+

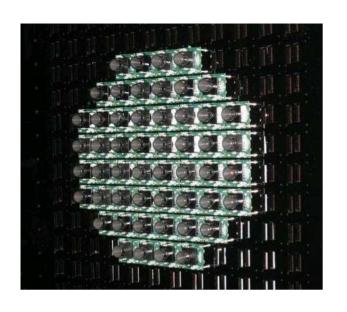
large numbers of sensors

» multi-view image data bases, camera arrays and networks, pattern recognition systems,

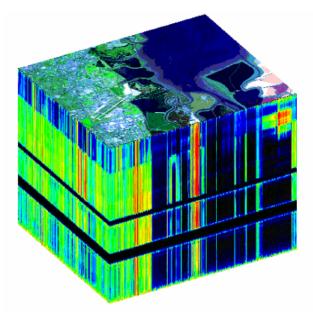
+

increasing numbers of modalities

» visual, IR, UV, THz, x-ray, SAR, ...



camera arrays



hyperspectral cameras

distributed camera networks

Pressure is on DSP

 Success of digital data acquisition is placing increasing pressure on signal/image processing hardware and software to support

higher resolution / denser sampling

» still cameras, video cameras, imaging systems, ...

+

large numbers of sensors

» multi-view image data bases, camera arrays and networks, pattern recognition systems,

+

increasing numbers of modalities

» visual, IR, UV, THz, x-ray, ...

_

deluge of data

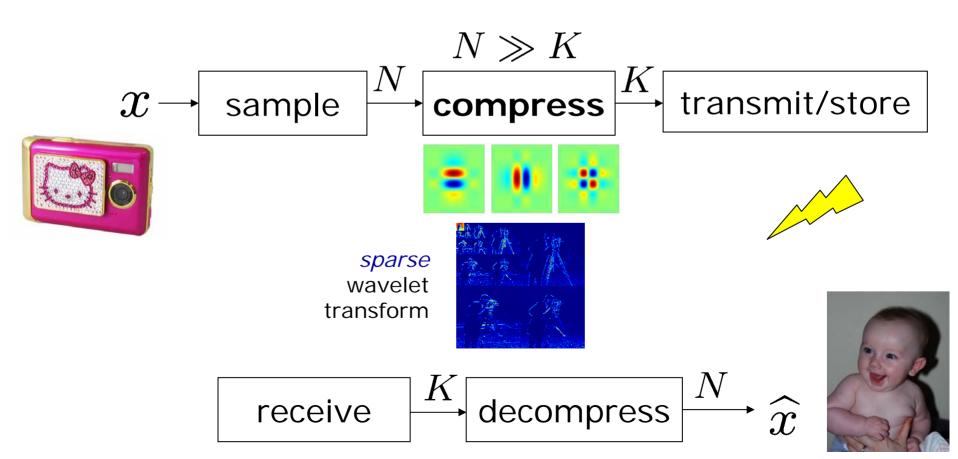
» how to acquire, store, fuse, process efficiently?

Antipasto

Sensing by Sampling

Sensing by Sampling

- Long-established paradigm for digital data acquisition
 - sample data at Nyquist rate (2x bandwidth)
 - compress data (signal-dependent, nonlinear)

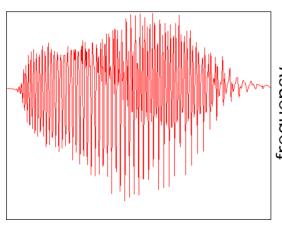


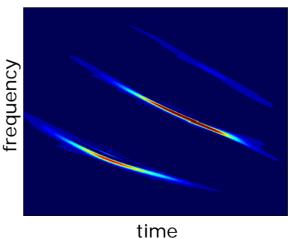
Sparsity / Compressibility

N pixels

 $K \ll N$ large wavelet coefficients

N wideband signal samples

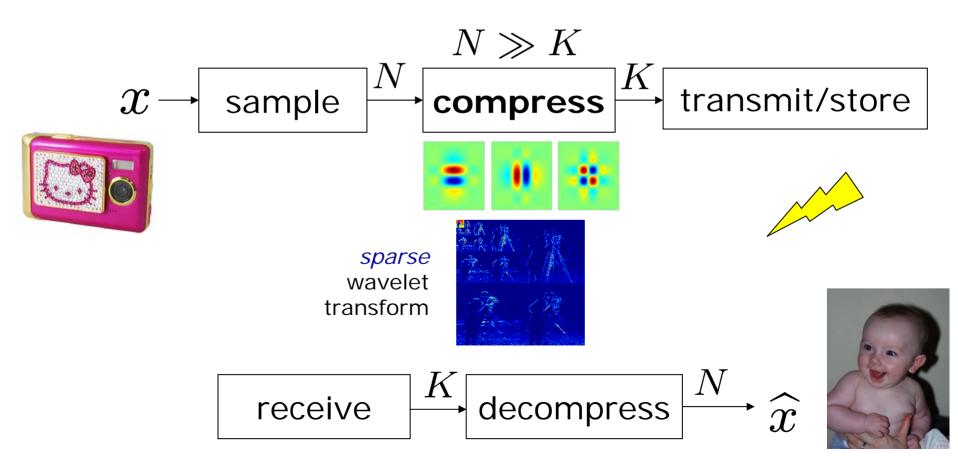




 $K \ll N$ large Gabor coefficients

What's Wrong with this Picture?

- Long-established paradigm for digital data acquisition
 - sample data at Nyquist rate (2x bandwidth)
 - compress data (signal-dependent, nonlinear)
 - brick wall to resolution/performance

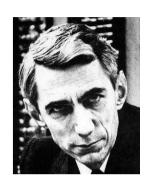


Primo

Compressive Sensing

Compressive Sensing (CS)

- Recall Shannon/Nyquist theorem
 - Shannon was a pessimist
 - 2x oversampling Nyquist rate is a worst-case bound for any bandlimited data
 - sparsity/compressibility irrelevant
 - Shannon sampling is a linear process while compression is a nonlinear process



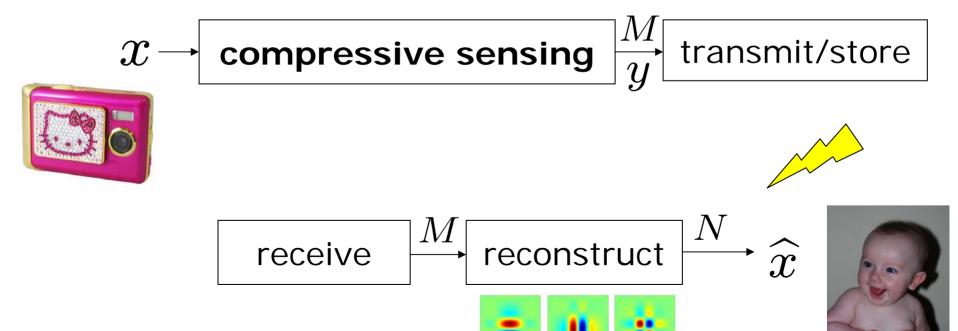
Compressive sensing

- new sampling theory that leverages compressibility
- based on new uncertainty principles
- randomness plays a key role

Compressive Sensing

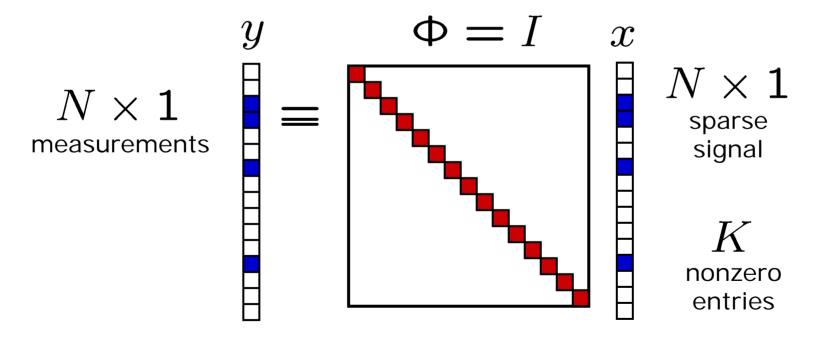
- Directly acquire "compressed" data
- Replace samples by more general "measurements"

$$K < M \ll N$$



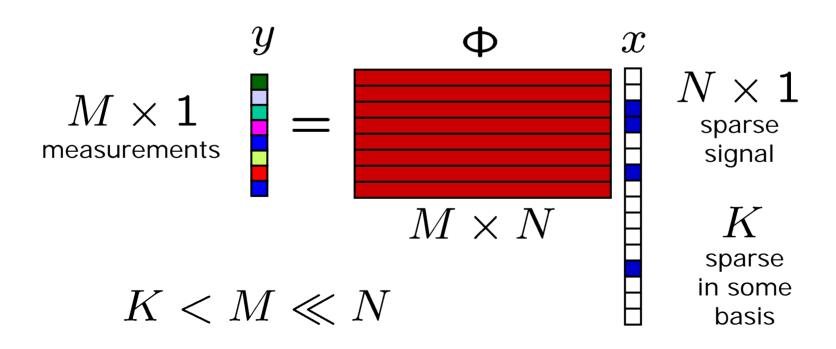
Sampling

- Signal x is K-sparse in basis/dictionary Ψ WLOG assume sparse in space domain $\Psi = I$
- Samples



Compressive Data Acquisition

• When data is sparse/compressible, can directly acquire a *condensed representation* with no/little information loss through *dimensionality reduction* $y = \Phi x$

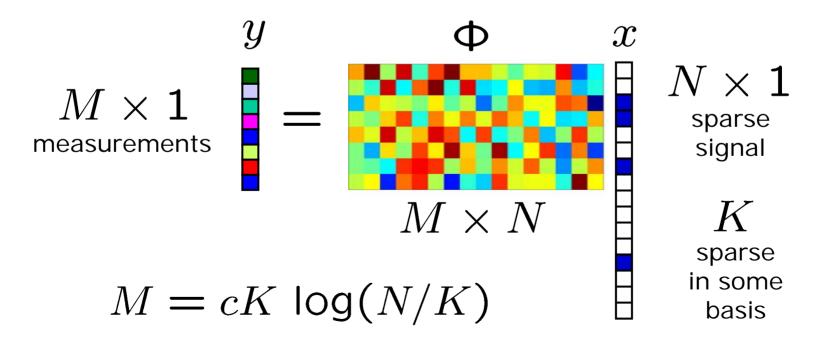


Compressive Data Acquisition

 When data is sparse/compressible, can directly acquire a condensed representation with no/little information loss

$$y = \Phi x$$

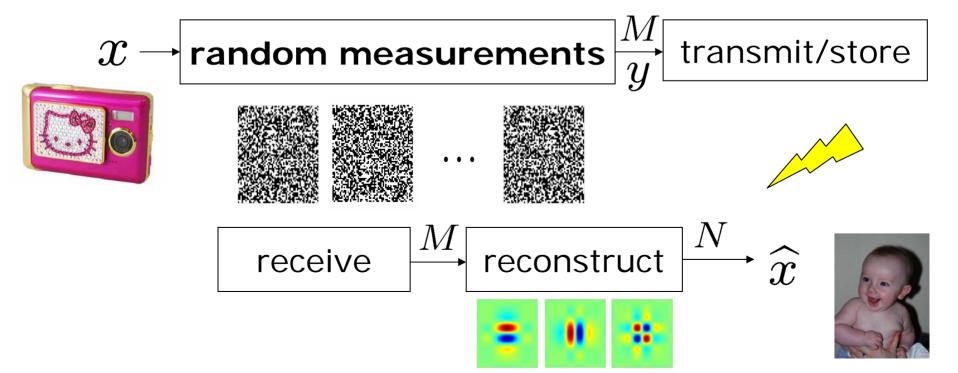
Random projection will work



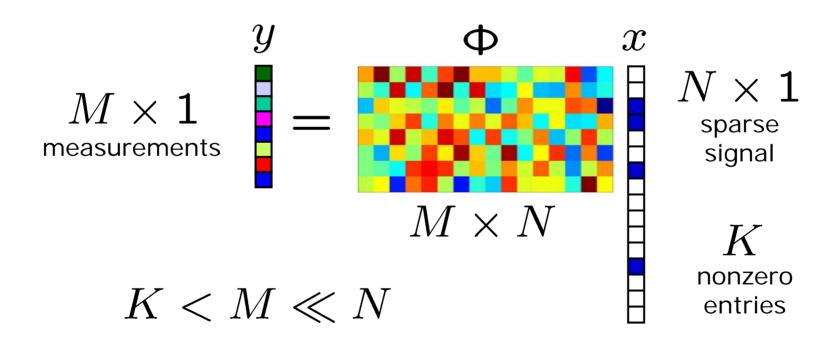
Compressive Sensing

- Directly acquire "compressed" data
- Replace samples by more general "measurements"

$$M = cK \log(N/K)$$



• Reconstruction/decoding: given $y = \Phi x$ (ill-posed inverse problem) find x



• Reconstruction/decoding: given $y = \Phi x$ (ill-posed inverse problem) find x

• Null space: there are infinitely many x such that $y = \Phi x$

- So search in null space for the "best" $\ x$ according to some criterion
 - ex: least squares

• Reconstruction/decoding: given $y = \Phi x$ (ill-posed inverse problem) find x

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_2$$

$$\boldsymbol{x}$$

$$\widehat{x} = (\Phi^T \Phi)^{-1} \Phi^T y$$

• Reconstruction/decoding: given $y = \Phi x$ (ill-posed inverse problem) find x

L₂ fast, wrong

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_2$$

 $\widehat{x} = \arg\min_{y = \Phi x} \|x\|_0$

L₀ correct, slow

[Bresler; Rice]

only M=K+1
measurements
required to
perfectly reconstruct
K-sparse signal

number of nonzero entries

• Reconstruction/decoding: given $y = \Phi x$ (ill-posed inverse problem) find x

[Candes, Romberg, Tao; Donoho]

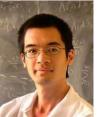
$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_2$$

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_0$$

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_1$$

linear program

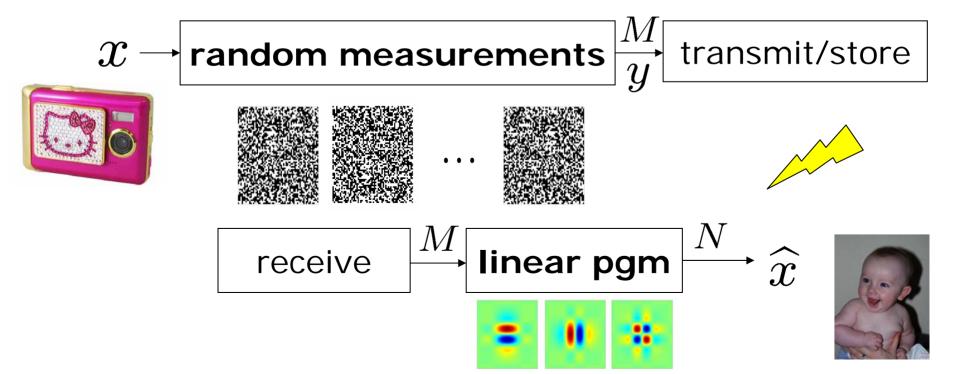
$$M = cK \log(N/K) \ll N$$



Compressive Sensing

- Directly acquire "compressed" data
- Replace samples by more general "measurements"

$$M = cK \log(N/K)$$



original (65k pixels)

7k-term wavelet approximation

CS Hallmarks

- CS changes the rules of the data acquisition game
 - exploits a priori signal sparsity information

Universal

 same random projections / hardware can be used for any compressible signal class (generic)

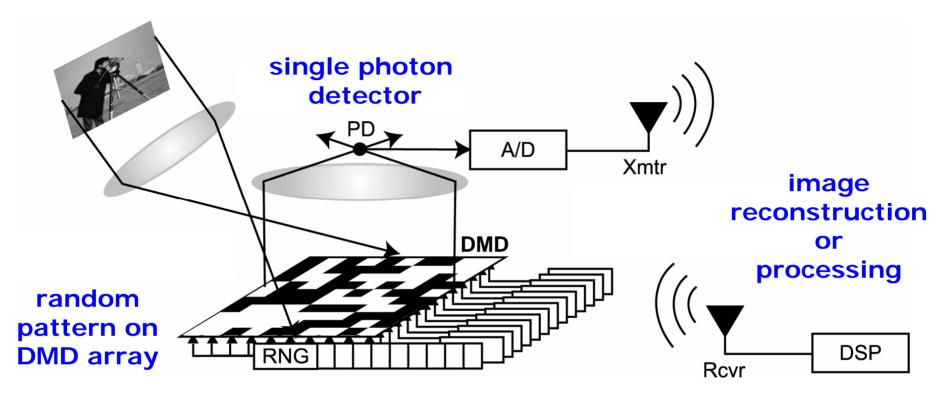
Democratic

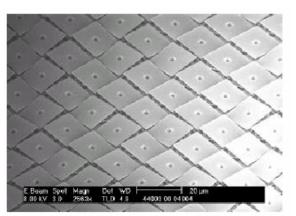
- each measurement carries the same amount of information
- simple encoding
- robust to measurement loss and quantization
- Asymmetrical (most processing at decoder)
- Random projections weakly encrypted

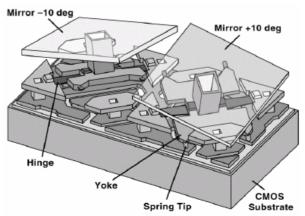
Secondo

Compressive Sensing in Action

"Single-Pixel" CS Camera

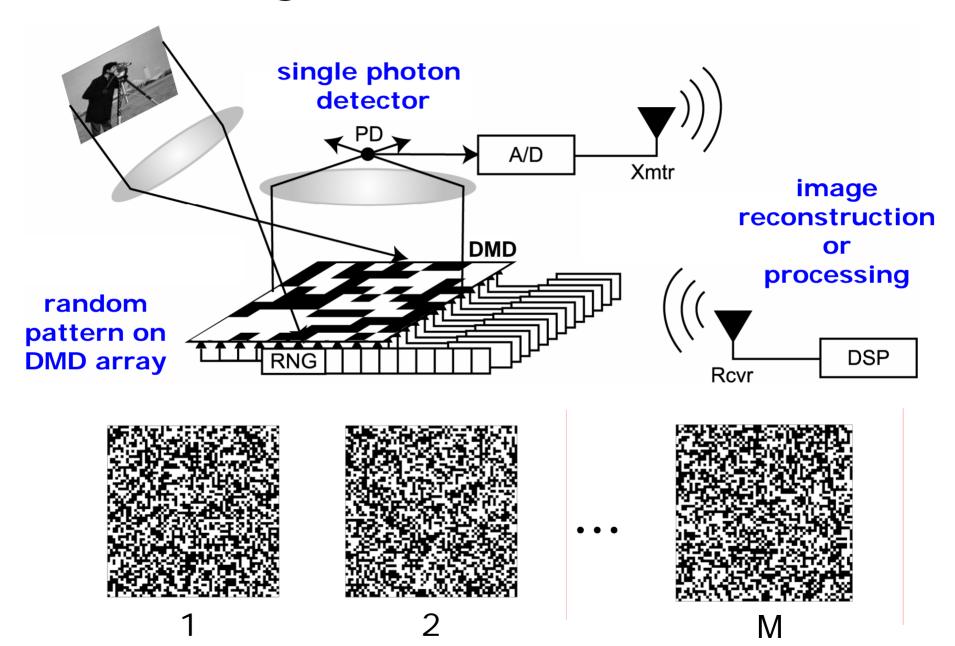




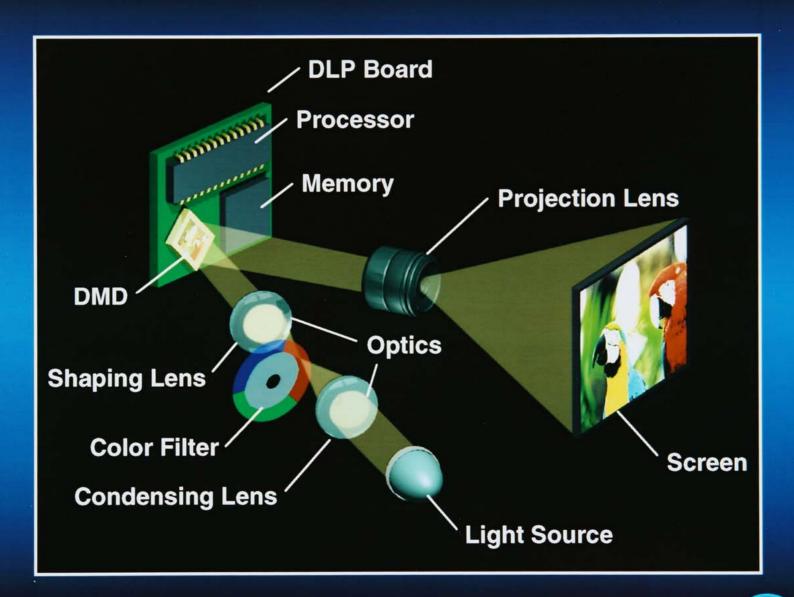


w/ Kevin Kelly and students

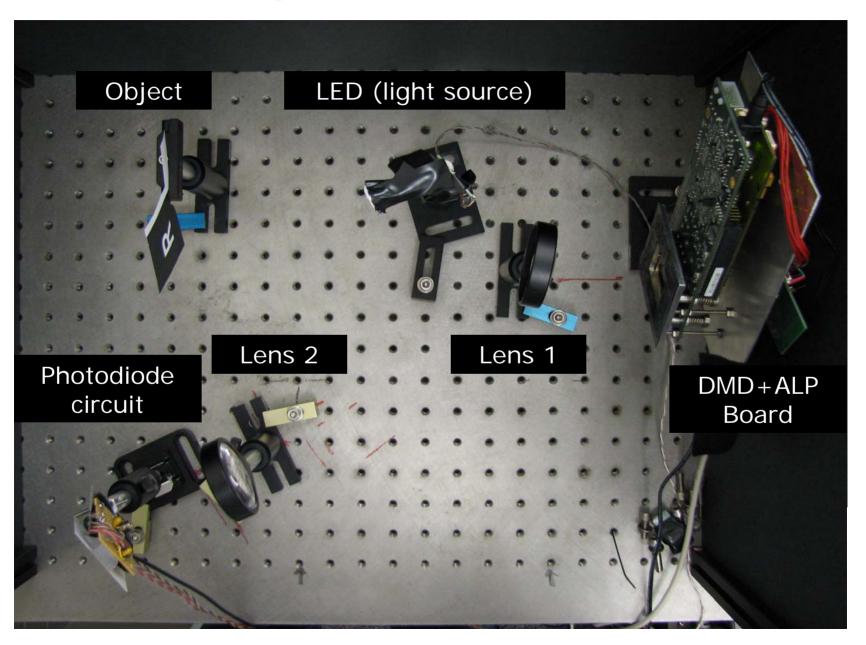
"Single-Pixel" CS Camera



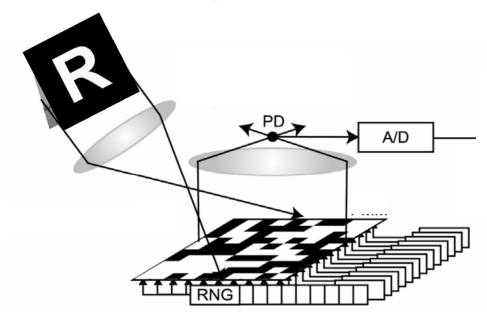
1 Chip DLP™ Projection



Single Pixel Camera

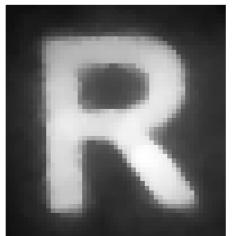


First Image Acquisition



target 65536 pixels

11000 measurements (16%)



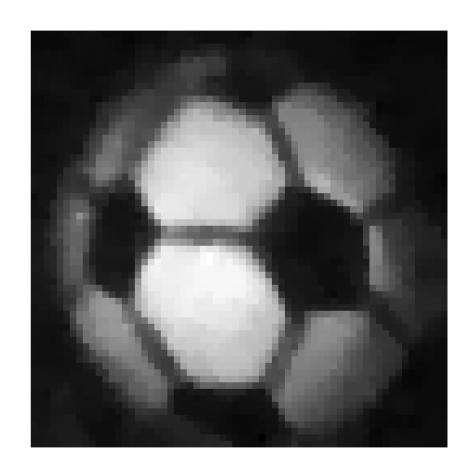
1300 measurements (2%)

World's First Photograph

- 1826, Joseph Niepce
- Farm buildings and sky
- 8 hour exposure
- On display at UT-Austin

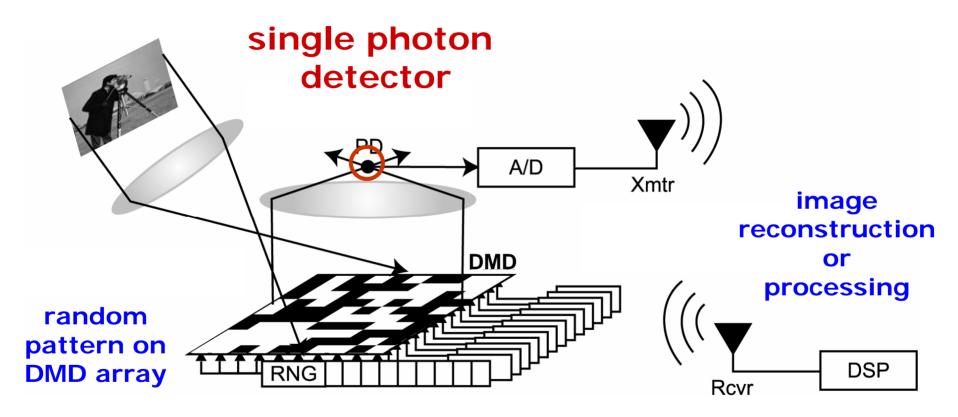
Second Image Acquisition

4096 pixels



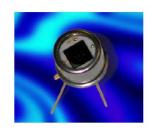
500 random measurements

Single-Pixel Camera

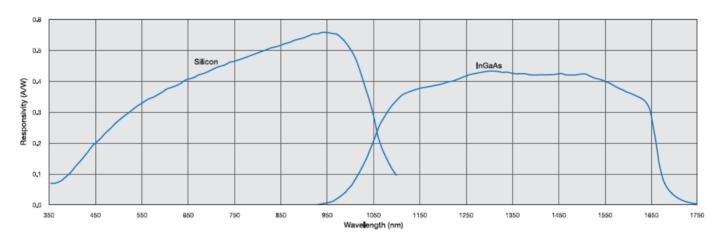


Dual Visible and Infrared Imaging

SD138-11-31-211 Silicon PIN Photodiode Sandwich Detector

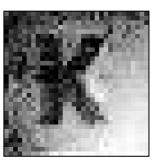


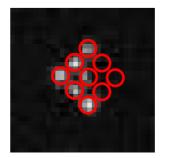
dual photodiode sandwich



K cutout in paper

front-lit visible

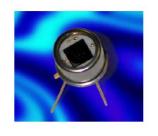




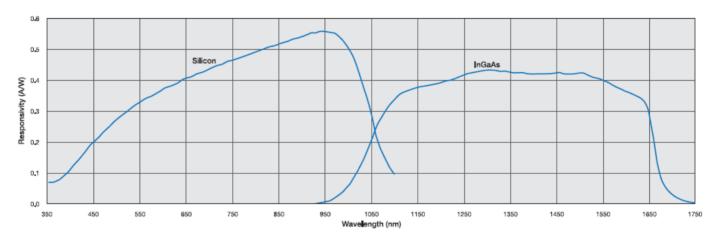
back-lit IR LEDs

Dual Visible and Infrared Imaging

SD138-11-31-211
Silicon PIN Photodiode Sandwich Detector



dual photodiode sandwich

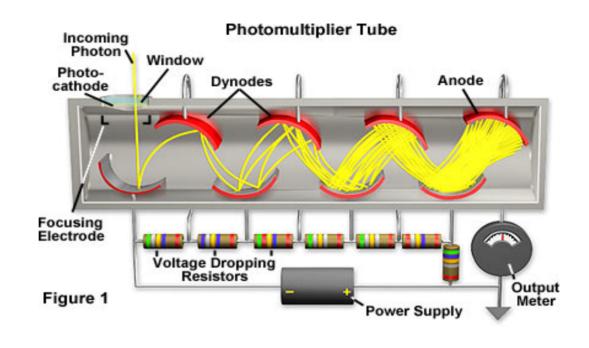


K cutout in paper

front-lit visible

back-lit IR LEDs

CS Low-Light Imaging with PMT

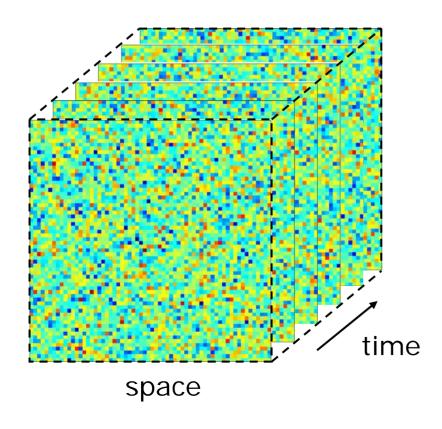


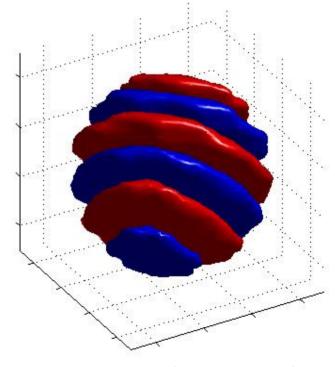
true color low-light imaging 256 x 256 image with 10:1 compression

[Nature Photonics, April 2007]

Video Acquisition

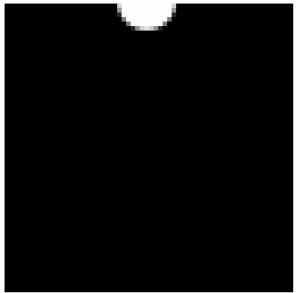
- Measure via stream of random projections
 - shutterless camera
- Reconstruct using sparse model for video structure
 - 3-D wavelets (localized in space-time)



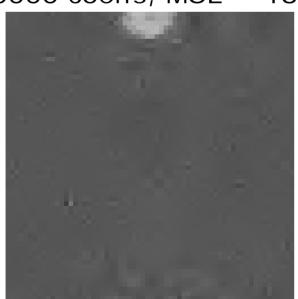


3D complex wavelet

original 64x64x64

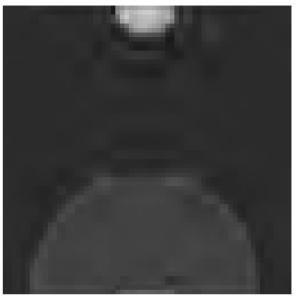


frame-by-frame 2-D CS recon 20000 coeffs, MSE = 18.4

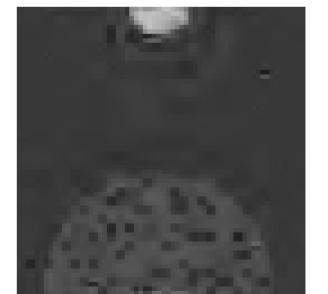


3-D wavelet thresholding

2000 coeffs, MSE = 3.5

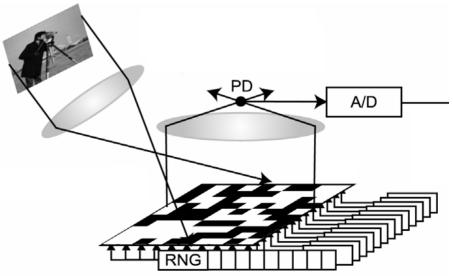


joint 3-D CS recon 20000 coeffs, MSE = 3.2



Miniature DMD-based Cameras

TI DLP "picoprojector" destined for cell phones





Oops, crash, seven million years of bad luck!?!

This is me skydiving

•

This is me swimming with dolphins

•

This is me at the Grand Canyon

•

Contorno

Information Scalability

Information Scalability

- Random projections ~ sufficient statistics
- Same random projections / hardware can be used for a range of different signal processing tasks reconstruction > estimation > recognition > detection
- Many fewer measurements may be required to detect/classify/recognize than to reconstruct
- Example applications:
 - adaptive cameras
 - smashed filter: compressive matched filter
 - non-imaging cameras
 - meta-analysis

Attentive CS Video Camera

[Ilan Goodman, Don Johnson]

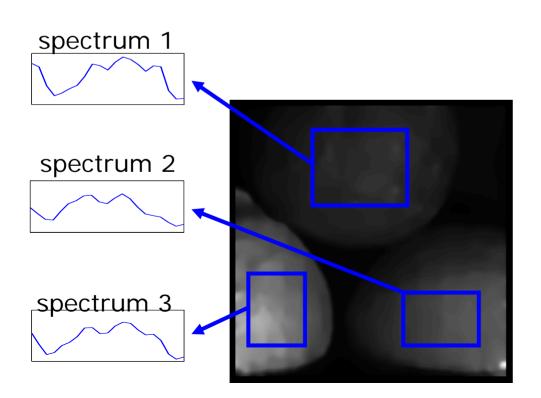
- Detect activity from random measurements
- Detection requires far fewer measurements than reconstruction
 - 320x240 pixels x 24 bits/pixel x 20 frames per second36,864,000 bits per second
 - detect activity from statistics of
 6 CS measurements/second x 4 bits/measurement

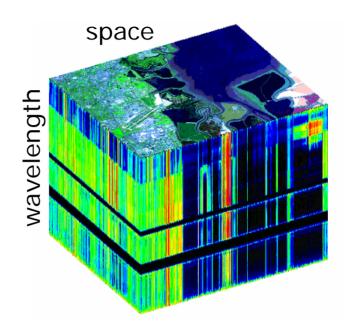
= 24 bits/second

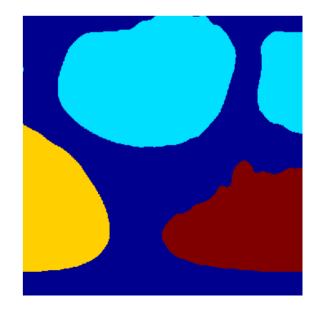
red = rate throttled back

Hyperspectral Image Classification

- 3D random projections of hyperspectral data cube
- Classify/segment rather than reconstruct

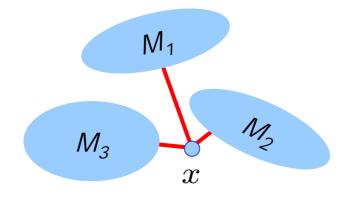






Matched Filter

- For signal classification when templates are parametrically transformed
 - ex: shift/rotate/scale
 - formulated via GLRT
- Underlying geometry: low-dimensional manifold
- Classification: nearest manifold search



Smashed Filter

Dimension-reduced GLRT for parametrically transformed signals

 Key theoretical ingredient: manifold structure preserved by random projections

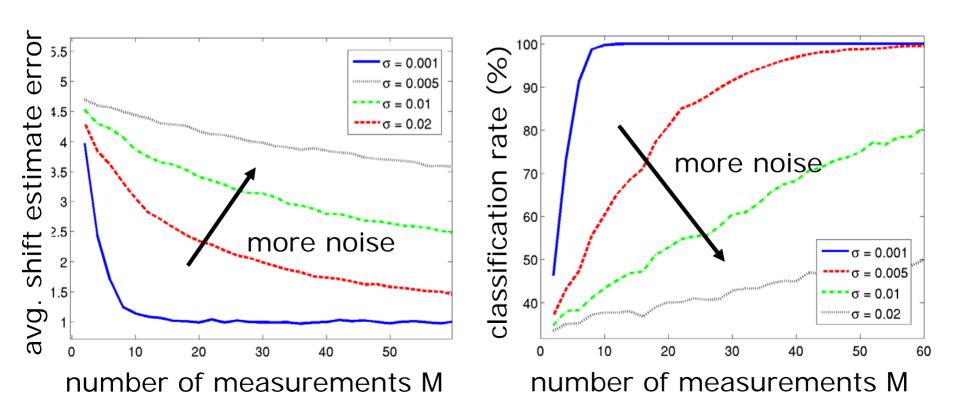
Classification: nearest manifold search

Smashed Filter – Experiments

- 3 image classes: tank, school bus, SUV
- N = 65536 pixels
- Imaged using single-pixel CS camera with
 - unknown shift
 - unknown rotation

Smashed Filter – Unknown Position

- Object shifted at random (K=2 manifold)
- Noise added to measurements
- Goal: identify most likely position for each image class identify most likely class using nearest-neighbor test

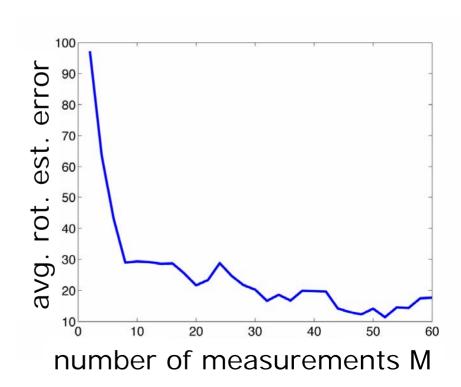


Smashed Filter – Unknown Rotation

Object rotated each 2 degrees

 Goals: identify most likely rotation for each image class identify most likely class using nearest-neighbor test

- Perfect classification with as few as 6 measurements
- Good estimates of rotation with under 10 measurements

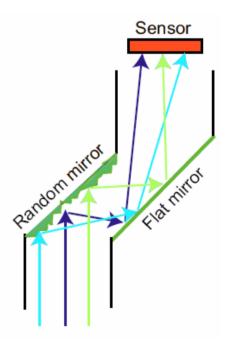


Dolce

Other Compressive Camera Architectures

Random Lens Camera

- Computes random sums using random mirror
- Use regular CCD array to acquire many random sums at once
- CS reconstruction yields super-resolved image



Thin Cameras

- Dave Brady @ Duke
- Thin cameras < 2.5mm
- Based on coded aperture, lenslets

Café

Conclusions

What's In it for You?

Compressive sensing

- exploits signal sparsity/compressibility information
- based on new uncertainty principles
- Sudoku-like reconstruction from random measurements
- integrates sensing, compression, processing
- enables new sensing architectures and modalities
- most useful when measurements are expensive
- CS measurements are information scalable reconstruction > estimation > classification > detection
- Selected mid/long-term applications
 - cameras and imagers where CCDs and CMOS imagers are blind (science, military)
 - security applications (potential for low cost / low power)
 - large camera arrays (compressibility gain with multiple cameras)
 - advanced algorithms for today's cameras (eg: deblurring)



Contact

Richard Baraniuk and Kevin Kelly

ECE Department
Rice University
richb@rice.edu, kkelly@rice.edu

dsp.rice.edu/cs dsp.rice.edu/cscamera